import os, pathlib, sqlite3, sys, tempfile from datetime import datetime from io import StringIO import pandas as pd import streamlit as st import torch from rdkit import Chem from rdkit.Chem import Draw from torch_geometric.loader import DataLoader from model import load_model from utils import smiles_to_data # Config DEVICE, RDKIT_DIM, MODEL_PATH, MAX_DISPLAY = "cpu", 6, "best_hybridgnn.pt", 20 # Model & DB (cached) @st.cache_resource def get_model(): return load_model(rdkit_dim=RDKIT_DIM, path=MODEL_PATH, device=DEVICE) model = get_model() DB_DIR = pathlib.Path(os.getenv("DB_DIR", "/tmp")) DB_DIR.mkdir(parents=True, exist_ok=True) @st.cache_resource def init_db(): conn = sqlite3.connect(DB_DIR / "predictions.db", check_same_thread=False) conn.execute( """CREATE TABLE IF NOT EXISTS predictions( id INTEGER PRIMARY KEY AUTOINCREMENT, smiles TEXT, prediction REAL, timestamp TEXT)""" ) conn.commit() return conn conn = init_db() cursor = conn.cursor() # debug and info panel with st.sidebar.expander("Info & Env", expanded=False): st.write(f"Python {sys.version.split()[0]}") st.write(f"Temp dir: `{tempfile.gettempdir()}` " f"({'writable' if os.access(tempfile.gettempdir(), os.W_OK) else 'read-only'})") if "csv_bytes" in st.session_state: st.write(f"Last upload: **{len(st.session_state['csv_bytes'])/1024:.1f} KB**") # Header st.title("HOMO-LUMO Gap Predictor") st.markdown(""" This app predicts the HOMO-LUMO energy gap for molecules using a trained Graph Neural Network (GNN). **Instructions:** - Enter a **single SMILES** string or **comma/newline separated list** in the box below. - Or **upload a CSV file** containing a single column of SMILES strings. - **Note**: If you've uploaded a CSV and want to switch to typing SMILES, please click the "X" next to the uploaded file to clear it. - SMILES format should look like: `O=C(C)Oc1ccccc1C(=O)O` (for aspirin). - The app will display predictions and molecule images (up to 20 shown at once). """) # File uploader (outside form) csv_file = st.file_uploader("CSV with SMILES", type=["csv"]) if csv_file is not None: st.session_state["csv_bytes"] = csv_file.getvalue() # Input form smiles_list = [] with st.form("main_form"): smiles_text = st.text_area("…or paste SMILES (comma/newline separated)", placeholder="CC(=O)Oc1ccccc1C(=O)O", height=120) run = st.form_submit_button("Run Prediction") # Parse input if run: if "csv_bytes" in st.session_state: try: df = pd.read_csv(StringIO(st.session_state["csv_bytes"].decode("utf-8")), comment="#") col = df.columns[0] if df.shape[1] == 1 else next((c for c in df.columns if c.lower() == "smiles"), None) if col is None: st.error("CSV needs one column or a 'SMILES' column") else: smiles_list = df[col].dropna().astype(str).tolist() st.success(f"{len(smiles_list)} SMILES loaded from CSV") except Exception as e: st.error(f"CSV error: {e}") elif smiles_text.strip(): smiles_list = [s.strip() for s in smiles_text.replace("\n", ",").split(",") if s.strip()] st.success(f"{len(smiles_list)} SMILES parsed from textbox") else: st.warning("No input provided") # Inference & display if smiles_list: data_list = smiles_to_data(smiles_list, device=DEVICE) valid = [(s, d) for s, d in zip(smiles_list, data_list) if d is not None] if not valid: st.warning("No valid molecules") else: vsmi, vdata = zip(*valid) preds = [] for batch in DataLoader(vdata, batch_size=64): with torch.no_grad(): preds.extend(get_model()(batch.to(DEVICE)).view(-1).cpu().numpy().tolist()) st.subheader(f"Results (first {MAX_DISPLAY})") for i, (smi, pred) in enumerate(zip(vsmi, preds)): if i >= MAX_DISPLAY: st.info("...Only Displaying 20 Compounds") break mol = Chem.MolFromSmiles(smi) if mol: st.image(Draw.MolToImage(mol, size=(250, 250))) st.write(f"`{smi}` → **{pred:.4f} eV**") cursor.execute( "INSERT INTO predictions(smiles, prediction, timestamp) VALUES (?,?,?)", (smi, float(pred), datetime.now().isoformat()), ) conn.commit() st.download_button("Download CSV", pd.DataFrame( {"SMILES": vsmi, "Gap (eV)": [round(p, 4) for p in preds]} ).to_csv(index=False).encode(), "homolumo_predictions.csv", "text/csv")