import streamlit as st import pandas as pd import torch import sqlite3 from datetime import datetime from rdkit import Chem from rdkit.Chem import Draw import os, pathlib from model import load_model from utils import smiles_to_data from torch_geometric.loader import DataLoader # Config DEVICE = "cpu" RDKIT_DIM = 6 MODEL_PATH = "best_hybridgnn.pt" MAX_DISPLAY = 10 # Load Model model = load_model(rdkit_dim=RDKIT_DIM, path=MODEL_PATH, device=DEVICE) # SQLite Setup DB_DIR = os.getenv("DB_DIR", "/tmp") # /data if you add a volume later pathlib.Path(DB_DIR).mkdir(parents=True, exist_ok=True) @st.cache_resource def init_db(): db_file = os.path.join(DB_DIR, "predictions.db") conn = sqlite3.connect(db_file, check_same_thread=False) c = conn.cursor() c.execute(""" CREATE TABLE IF NOT EXISTS predictions ( id INTEGER PRIMARY KEY AUTOINCREMENT, smiles TEXT, prediction REAL, timestamp TEXT ) """) conn.commit() return conn conn = init_db() cursor = conn.cursor() # Streamlit UI st.title("HOMO-LUMO Gap Predictor") st.markdown(""" This app predicts the HOMO-LUMO energy gap for molecules using a trained Graph Neural Network (GNN). **Instructions:** - Enter a **single SMILES** string or **comma-separated list** in the box below. - Or **upload a CSV file** containing a single column of SMILES strings. - **Note**: If you've uploaded a CSV and want to switch to typing SMILES, please click the “X” next to the uploaded file to clear it. - SMILES format should look like: `CC(=O)Oc1ccccc1C(=O)O` (for aspirin). - The app will display predictions and molecule images (up to 10 shown at once). """) # Text Input smiles_input = st.text_area("Enter SMILES string(s)", placeholder="C1=CC=CC=C1, CC(=O)Oc1ccccc1C(=O)O") # File Upload uploaded_file = st.file_uploader("...or upload a CSV file", type=["csv"]) smiles_list = [] if uploaded_file: try: df = pd.read_csv(uploaded_file) if df.shape[1] != 1: st.error("CSV should have only one column with SMILES strings.") else: smiles_list = df.iloc[:, 0].dropna().astype(str).tolist() st.success(f"{len(smiles_list)} SMILES loaded from file.") except Exception as e: st.error(f"Error reading CSV: {e}") elif smiles_input: raw_input = smiles_input.strip().replace("\n", ",") smiles_list = [smi.strip() for smi in raw_input.split(",") if smi.strip()] st.success(f"{len(smiles_list)} SMILES parsed from input.") # Run Inference if smiles_list: with st.spinner("Processing molecules..."): data_list = smiles_to_data(smiles_list, device=DEVICE) # Filter only valid molecules and keep aligned SMILES valid_pairs = [(smi, data) for smi, data in zip(smiles_list, data_list) if data is not None] if not valid_pairs: st.warning("No valid molecules found.") else: valid_smiles, valid_data = zip(*valid_pairs) loader = DataLoader(valid_data, batch_size=64) predictions = [] for batch in loader: batch = batch.to(DEVICE) with torch.no_grad(): pred = model(batch).view(-1).cpu().numpy() predictions.extend(pred.tolist()) # Display Results st.subheader(f"Predictions (showing up to {MAX_DISPLAY} molecules):") for i, (smi, pred) in enumerate(zip(valid_smiles, predictions)): if i >= MAX_DISPLAY: st.info(f"...only showing the first {MAX_DISPLAY} molecules") break mol = Chem.MolFromSmiles(smi) if mol: st.image(Draw.MolToImage(mol, size=(250, 250))) st.write(f"**SMILES**: `{smi}`") st.write(f"**Predicted HOMO-LUMO Gap**: `{pred:.4f} eV`") # Log to SQLite cursor.execute("INSERT INTO predictions (smiles, prediction, timestamp) VALUES (?, ?, ?)", (smi, pred, str(datetime.now()))) conn.commit() # Download Results result_df = pd.DataFrame({ "SMILES": valid_smiles, "Predicted HOMO-LUMO Gap (eV)": [round(p, 4) for p in predictions] }) st.download_button( label="Download Predictions as CSV", data=result_df.to_csv(index=False).encode('utf-8'), file_name="homolumo_predictions.csv", mime="text/csv" )