Spaces:
Building
Building
File size: 25,577 Bytes
970e6a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
from flask import Flask, request, jsonify, Response, stream_with_context
import json
import os
import re
import logging
import func
from datetime import datetime, timedelta
from apscheduler.schedulers.background import BackgroundScheduler
import time
import requests
from collections import deque
import random
from dataclasses import dataclass
from typing import Optional, Dict, Any
app = Flask(__name__)
os.environ['TZ'] = 'Asia/Shanghai'
app = Flask(__name__)
app.secret_key = os.urandom(24)
formatter = logging.Formatter('%(message)s')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
handler.setFormatter(formatter)
logger.addHandler(handler)
MAX_RETRIES = int(os.environ.get('MaxRetries', '3').strip() or '3')
MAX_REQUESTS = int(os.environ.get('MaxRequests', '2').strip() or '2')
LIMIT_WINDOW = int(os.environ.get('LimitWindow', '60').strip() or '60')
RETRY_DELAY = 1
MAX_RETRY_DELAY = 16
request_counts = {}
api_key_blacklist = set()
api_key_blacklist_duration = 60
safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE"
},
{
"category": 'HARM_CATEGORY_CIVIC_INTEGRITY',
"threshold": 'BLOCK_NONE'
}
]
safety_settings_g2 = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "OFF"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "OFF"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "OFF"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "OFF"
},
{
"category": 'HARM_CATEGORY_CIVIC_INTEGRITY',
"threshold": 'OFF'
}
]
@dataclass
class GeneratedText:
text: str
finish_reason: Optional[str] = None
class ResponseWrapper:
def __init__(self, data: Dict[Any, Any]):
self._data = data
self._text = self._extract_text()
self._finish_reason = self._extract_finish_reason()
self._prompt_token_count = self._extract_prompt_token_count()
self._candidates_token_count = self._extract_candidates_token_count()
self._total_token_count = self._extract_total_token_count()
self._thoughts = self._extract_thoughts()
self._json_dumps = json.dumps(self._data, indent=4, ensure_ascii=False)
def _extract_thoughts(self) -> Optional[str]:
try:
for part in self._data['candidates'][0]['content']['parts']:
if 'thought' in part:
return part['text']
return ""
except (KeyError, IndexError):
return ""
def _extract_text(self) -> str:
try:
for part in self._data['candidates'][0]['content']['parts']:
if 'thought' not in part:
return part['text']
return ""
except (KeyError, IndexError):
return ""
def _extract_finish_reason(self) -> Optional[str]:
try:
return self._data['candidates'][0].get('finishReason')
except (KeyError, IndexError):
return None
def _extract_prompt_token_count(self) -> Optional[int]:
try:
return self._data['usageMetadata'].get('promptTokenCount')
except (KeyError):
return None
def _extract_candidates_token_count(self) -> Optional[int]:
try:
return self._data['usageMetadata'].get('candidatesTokenCount')
except (KeyError):
return None
def _extract_total_token_count(self) -> Optional[int]:
try:
return self._data['usageMetadata'].get('totalTokenCount')
except (KeyError):
return None
@property
def text(self) -> str:
return self._text
@property
def finish_reason(self) -> Optional[str]:
return self._finish_reason
@property
def prompt_token_count(self) -> Optional[int]:
return self._prompt_token_count
@property
def candidates_token_count(self) -> Optional[int]:
return self._candidates_token_count
@property
def total_token_count(self) -> Optional[int]:
return self._total_token_count
@property
def thoughts(self) -> Optional[str]:
return self._thoughts
@property
def json_dumps(self) -> str:
return self._json_dumps
class APIKeyManager:
def __init__(self):
self.api_keys = re.findall(r"AIzaSy[a-zA-Z0-9_-]{33}", os.environ.get('KeyArray'))
self.current_index = random.randint(0, len(self.api_keys) - 1)
def get_available_key(self):
num_keys = len(self.api_keys)
for _ in range(num_keys):
if self.current_index >= num_keys:
self.current_index = 0
current_key = self.api_keys[self.current_index]
self.current_index += 1
if current_key not in api_key_blacklist:
return current_key
logger.error("所有API key都已耗尽或被暂时禁用,请重新配置或稍后重试")
return None
def show_all_keys(self):
logger.info(f"当前可用API key个数: {len(self.api_keys)} ")
for i, api_key in enumerate(self.api_keys):
logger.info(f"API Key{i}: {api_key[:8]}...{api_key[-3:]}")
def blacklist_key(self, key):
logger.warning(f"{key[:8]} → 暂时禁用 {api_key_blacklist_duration} 秒")
api_key_blacklist.add(key)
scheduler.add_job(lambda: api_key_blacklist.discard(key), 'date', run_date=datetime.now() + timedelta(seconds=api_key_blacklist_duration))
key_manager = APIKeyManager()
key_manager.show_all_keys()
current_api_key = key_manager.get_available_key()
def switch_api_key():
global current_api_key
key = key_manager.get_available_key()
if key:
current_api_key = key
logger.info(f"API key 替换为 → {current_api_key[:8]}...{current_api_key[-3:]}")
else:
logger.error("API key 替换失败,所有API key都已耗尽或被暂时禁用,请重新配置或稍后重试")
logger.info(f"当前 API key: {current_api_key[:8]}...{current_api_key[-3:]}")
GEMINI_MODELS = [
{"id": "text-embedding-004"},
{"id": "gemini-1.5-flash-8b-latest"},
{"id": "gemini-1.5-flash-8b-exp-0924"},
{"id": "gemini-1.5-flash-latest"},
{"id": "gemini-1.5-flash-exp-0827"},
{"id": "gemini-1.5-pro-latest"},
{"id": "gemini-1.5-pro-exp-0827"},
{"id": "learnlm-1.5-pro-experimental"},
{"id": "gemini-exp-1114"},
{"id": "gemini-exp-1121"},
{"id": "gemini-exp-1206"},
{"id": "gemini-2.0-flash-exp"},
{"id": "gemini-2.0-flash-thinking-exp-1219"},
{"id": "gemini-2.0-flash-thinking-exp-01-21"},
{"id": "gemini-2.0-pro-exp-02-05"}
]
def is_within_rate_limit(api_key):
now = datetime.now()
if api_key not in request_counts:
request_counts[api_key] = deque()
while request_counts[api_key] and request_counts[api_key][0] < now - timedelta(seconds=LIMIT_WINDOW):
request_counts[api_key].popleft()
if len(request_counts[api_key]) >= MAX_REQUESTS:
earliest_request_time = request_counts[api_key][0]
wait_time = (earliest_request_time + timedelta(seconds=LIMIT_WINDOW)) - now
return False, wait_time.total_seconds()
else:
return True, 0
def increment_request_count(api_key):
now = datetime.now()
if api_key not in request_counts:
request_counts[api_key] = deque()
request_counts[api_key].append(now)
def handle_api_error(error, attempt, current_api_key):
if attempt > MAX_RETRIES:
logger.error(f"{MAX_RETRIES} 次尝试后仍然失败,请修改预设或输入")
return 0, jsonify({
'error': {
'message': f"{MAX_RETRIES} 次尝试后仍然失败,请修改预设或输入",
'type': 'max_retries_exceeded'
}
})
if isinstance(error, requests.exceptions.HTTPError):
status_code = error.response.status_code
if status_code == 400:
try:
error_data = error.response.json()
if 'error' in error_data:
if error_data['error'].get('code') == "invalid_argument":
logger.error(f"{current_api_key[:8]} ... {current_api_key[-3:]} → 无效,可能已过期或被删除")
key_manager.blacklist_key(current_api_key)
switch_api_key()
return 0, None
error_message = error_data['error'].get('message', 'Bad Request')
error_type = error_data['error'].get('type', 'invalid_request_error')
logger.warning(f"400 错误请求: {error_message}")
return 2, jsonify({'error': {'message': error_message, 'type': error_type}})
except ValueError:
logger.warning("400 错误请求:响应不是有效的JSON格式")
return 2, jsonify({'error': {'message': '', 'type': 'invalid_request_error'}})
elif status_code == 429:
logger.warning(
f"{current_api_key[:8]} ... {current_api_key[-3:]} → 429 官方资源耗尽 → 立即重试..."
)
key_manager.blacklist_key(current_api_key)
switch_api_key()
return 0, None
elif status_code == 403:
logger.error(
f"{current_api_key[:8]} ... {current_api_key[-3:]} → 403 权限被拒绝,该 API KEY 可能已经被官方封禁"
)
key_manager.blacklist_key(current_api_key)
switch_api_key()
return 0, None
elif status_code == 500:
logger.warning(
f"{current_api_key[:8]} ... {current_api_key[-3:]} → 500 服务器内部错误 → 立即重试..."
)
switch_api_key()
return 0, None
elif status_code == 503:
logger.warning(
f"{current_api_key[:8]} ... {current_api_key[-3:]} → 503 服务不可用 → 立即重试..."
)
switch_api_key()
return 0, None
else:
logger.warning(
f"{current_api_key[:8]} ... {current_api_key[-3:]} → {status_code} 未知错误/模型不可用 → 不重试..."
)
switch_api_key()
return 2, None
elif isinstance(error, requests.exceptions.ConnectionError):
delay = min(RETRY_DELAY * (2 ** attempt), MAX_RETRY_DELAY)
logger.warning(f"连接错误 → 立即重试...")
time.sleep(delay)
return 0, None
elif isinstance(error, requests.exceptions.Timeout):
delay = min(RETRY_DELAY * (2 ** attempt), MAX_RETRY_DELAY)
logger.warning(f"请求超时 → 立即重试...")
time.sleep(delay)
return 0, None
else:
logger.error(f"发生未知错误: {error}")
return 0, jsonify({
'error': {
'message': f"发生未知错误: {error}",
'type': 'unknown_error'
}
})
@app.route('/hf/v1/chat/completions', methods=['POST'])
def chat_completions():
is_authenticated, auth_error, status_code = func.authenticate_request(request)
if not is_authenticated:
return auth_error if auth_error else jsonify({'error': '未授权'}), status_code if status_code else 401
request_data = request.get_json()
messages = request_data.get('messages', [])
model = request_data.get('model', 'gemini-2.0-flash-exp')
temperature = request_data.get('temperature', 1)
max_tokens = request_data.get('max_tokens', 8192)
show_thoughts = request_data.get('show_thoughts', False)
stream = request_data.get('stream', False)
use_system_prompt = request_data.get('use_system_prompt', False)
hint = "流式" if stream else "非流"
logger.info(f"\n{model} [{hint}] → {current_api_key[:8]}...{current_api_key[-3:]}")
is_thinking = 'thinking' in model
api_version = 'v1alpha' if is_thinking else 'v1beta'
response_type = 'streamGenerateContent' if stream else 'generateContent'
is_SSE = '&alt=sse' if stream else ''
contents, system_instruction, error_response = func.process_messages_for_gemini(messages, use_system_prompt)
if error_response:
logger.error(f"处理输入消息时出错↙\n {error_response}")
return jsonify(error_response), 400
def do_request(current_api_key, attempt):
isok, time_remaining = is_within_rate_limit(current_api_key)
if not isok:
logger.warning(f"暂时超过限额,该API key将在 {time_remaining} 秒后启用...")
switch_api_key()
return 0, None
increment_request_count(current_api_key)
url = f"https://generativelanguage.googleapis.com/{api_version}/models/{model}:{response_type}?key={current_api_key}{is_SSE}"
headers = {
"Content-Type": "application/json",
}
data = {
"contents": contents,
"generationConfig": {
"temperature": temperature,
"maxOutputTokens": max_tokens,
},
"safetySettings": safety_settings_g2 if 'gemini-2.0-flash-exp' in model else safety_settings,
}
if system_instruction:
data["system_instruction"] = system_instruction
try:
response = requests.post(url, headers=headers, json=data, stream=True)
response.raise_for_status()
if stream:
return 1, response
else:
return 1, ResponseWrapper(response.json())
except requests.exceptions.RequestException as e:
return handle_api_error(e, attempt, current_api_key)
def generate_stream(response):
logger.info(f"流式开始 →")
buffer = b""
try:
for line in response.iter_lines():
if not line:
continue
try:
if line.startswith(b'data: '):
line = line[6:]
buffer += line
try:
data = json.loads(buffer.decode('utf-8'))
buffer = b""
if 'candidates' in data and data['candidates']:
candidate = data['candidates'][0]
if 'content' in candidate:
content = candidate['content']
if 'parts' in content and content['parts']:
parts = content['parts']
if is_thinking and not show_thoughts:
parts = [part for part in parts if not part.get('thought')]
if parts:
text = parts[0].get('text', '')
finish_reason = candidate.get('finishReason')
if text:
data = {
'choices': [{
'delta': {
'content': text
},
'finish_reason': finish_reason,
'index': 0
}],
'object': 'chat.completion.chunk'
}
yield f"data: {json.dumps(data)}\n\n"
if candidate.get("finishReason") and candidate.get("finishReason") != "STOP":
error_message = {
"error": {
"code": "content_filter",
"message": f"模型的响应因违反内容政策而被标记:{candidate.get('finishReason')}",
"status": candidate.get("finishReason"),
"details": []
}
}
logger.warning(f"模型的响应因违反内容政策而被标记: {candidate.get('finishReason')}")
yield f"data: {json.dumps(error_message)}\n\n"
break
if 'safetyRatings' in candidate:
for rating in candidate['safetyRatings']:
if rating['probability'] == 'HIGH':
error_message = {
"error": {
"code": "content_filter",
"message": f"模型的响应因高概率被标记为 {rating['category']}",
"status": "SAFETY_RATING_HIGH",
"details": [rating]
}
}
logger.warning(f"模型的响应因高概率被标记为 {rating['category']}")
yield f"data: {json.dumps(error_message)}\n\n"
break
else:
continue
break
except json.JSONDecodeError:
logger.debug(f"JSON解析错误, 当前缓冲区内容: {buffer}")
continue
except Exception as e:
logger.error(f"流式处理期间发生错误: {e}, 原始数据行↙\n{line}")
yield f"data: {json.dumps({'error': str(e)})}\n\n"
else:
yield f"data: {json.dumps({'choices': [{'delta': {}, 'finish_reason': 'stop', 'index': 0}]})}\n\n"
logger.info(f"流式结束 ←")
logger.info(f"200!")
except Exception as e:
logger.error(f"流式处理错误↙\n{e}")
yield f"data: {json.dumps({'error': str(e)})}\n\n"
attempt = 0
success = 0
response = None
for attempt in range(1, MAX_RETRIES + 1):
logger.info(f"第 {attempt}/{MAX_RETRIES} 次尝试 ...")
success, response = do_request(current_api_key, attempt)
if success == 0:
continue
elif success == 1 and response is None:
continue
elif success == 1 and stream:
return Response(
stream_with_context(generate_stream(response)),
mimetype='text/event-stream'
)
elif success == 1 and isinstance(response, ResponseWrapper):
try:
text_content = response.text
prompt_tokens = response.prompt_token_count
completion_tokens = response.candidates_token_count
total_tokens = response.total_token_count
finish_reason = response.finish_reason
if text_content == '':
error_message = None
if response._data and 'error' in response._data:
error_message = response._data['error'].get('message')
if error_message:
logger.error(f"生成内容失败,API 返回错误: {error_message}")
else:
logger.error(f"生成内容失败: text_content 为空")
continue
if is_thinking and show_thoughts:
text_content = response.thoughts + '\n' + text_content
except AttributeError as e:
logger.error(f"处理响应失败,缺少必要的属性: {e}")
logger.error(f"原始响应: {response._data}")
continue
except Exception as e:
logger.error(f"处理响应失败: {e}")
continue
response_data = {
'id': 'chatcmpl-xxxxxxxxxxxx',
'object': 'chat.completion',
'created': int(datetime.now().timestamp()),
'model': model,
'choices': [{
'index': 0,
'message': {
'role': 'assistant',
'content': text_content
},
'finish_reason': finish_reason
}],
'usage': {
'prompt_tokens': prompt_tokens,
'completion_tokens': completion_tokens,
'total_tokens': total_tokens
}
}
logger.info(f"200!")
return jsonify(response_data)
elif success == 1 and isinstance(response, tuple):
return response[1], response[0]
elif success == 2:
logger.error(f"{model} 可能暂时不可用,请更换模型或未来一段时间再试")
response = {
'error': {
'message': f'{model} 可能暂时不可用,请更换模型或未来一段时间再试',
'type': 'internal_server_error'
}
}
return jsonify(response), 503
else:
logger.error(f"{MAX_RETRIES} 次尝试均失败,请重试或等待官方恢复")
response = {
'error': {
'message': f'{MAX_RETRIES} 次尝试均失败,请重试或等待官方恢复',
'type': 'internal_server_error'
}
}
return jsonify(response), 500 if response is not None else 503
@app.route('/hf/v1/models', methods=['GET'])
def list_models():
response = {"object": "list", "data": GEMINI_MODELS}
return jsonify(response)
@app.route('/hf/v1/embeddings', methods=['POST'])
def embeddings():
data = request.get_json()
model_input = data.get("input")
model = data.get("model", "text-embedding-004")
if not model_input:
return jsonify({"error": "没有提供输入"}), 400
if isinstance(model_input, str):
model_input = [model_input]
gemini_request = {
"model": f"models/{model}",
"content": {
"parts": [{"text": text} for text in model_input]
}
}
gemini_url = f"https://generativelanguage.googleapis.com/v1beta/models/{model}:embedContent?key={current_api_key}"
headers = {"Content-Type": "application/json"}
try:
gemini_response = requests.post(gemini_url, json=gemini_request, headers=headers)
gemini_response.raise_for_status()
response_json = gemini_response.json()
embeddings_data = []
if 'embedding' in response_json:
embeddings_data.append({
"object": "embedding",
"embedding": response_json['embedding']['values'],
"index": 0,
})
elif 'embeddings' in response_json:
for i, embedding in enumerate(response_json['embeddings']):
embeddings_data.append({
"object": "embedding",
"embedding": embedding['values'],
"index": i,
})
client_response = {
"object": "list",
"data": embeddings_data,
"model": model,
"usage": {
"prompt_tokens": 0,
"total_tokens": 0,
},
}
switch_api_key()
return jsonify(client_response)
except requests.exceptions.RequestException as e:
print(f"请求Embeddings失败↙\: {e}")
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
scheduler = BackgroundScheduler()
scheduler.start()
logger.info(f"Reminiproxy v2.3.5 启动")
logger.info(f"最大尝试次数/MaxRetries: {MAX_RETRIES}")
logger.info(f"最大请求次数/MaxRequests: {MAX_REQUESTS}")
logger.info(f"请求限额窗口/LimitWindow: {LIMIT_WINDOW} 秒")
app.run(debug=True, host='0.0.0.0', port=7860) |