File size: 25,577 Bytes
970e6a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
from flask import Flask, request, jsonify, Response, stream_with_context
import json
import os
import re
import logging
import func
from datetime import datetime, timedelta
from apscheduler.schedulers.background import BackgroundScheduler
import time
import requests
from collections import deque
import random
from dataclasses import dataclass
from typing import Optional, Dict, Any

app = Flask(__name__)

os.environ['TZ'] = 'Asia/Shanghai'

app = Flask(__name__)

app.secret_key = os.urandom(24)

formatter = logging.Formatter('%(message)s')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
handler.setFormatter(formatter)
logger.addHandler(handler)

MAX_RETRIES = int(os.environ.get('MaxRetries', '3').strip() or '3')
MAX_REQUESTS = int(os.environ.get('MaxRequests', '2').strip() or '2')
LIMIT_WINDOW = int(os.environ.get('LimitWindow', '60').strip() or '60')

RETRY_DELAY = 1
MAX_RETRY_DELAY = 16

request_counts = {}

api_key_blacklist = set()
api_key_blacklist_duration = 60


safety_settings = [
    {
        "category": "HARM_CATEGORY_HARASSMENT",
        "threshold": "BLOCK_NONE"
    },
    {
        "category": "HARM_CATEGORY_HATE_SPEECH",
        "threshold": "BLOCK_NONE"
    },
    {
        "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
        "threshold": "BLOCK_NONE"
    },
    {
        "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
        "threshold": "BLOCK_NONE"
    },
    {
        "category": 'HARM_CATEGORY_CIVIC_INTEGRITY',
        "threshold": 'BLOCK_NONE'
    }
]
safety_settings_g2 = [
    {
        "category": "HARM_CATEGORY_HARASSMENT",
        "threshold": "OFF"
    },
    {
        "category": "HARM_CATEGORY_HATE_SPEECH",
        "threshold": "OFF"
    },
    {
        "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
        "threshold": "OFF"
    },
    {
        "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
        "threshold": "OFF"
    },
    {
        "category": 'HARM_CATEGORY_CIVIC_INTEGRITY',
        "threshold": 'OFF'
    }
]
@dataclass
class GeneratedText:
    text: str
    finish_reason: Optional[str] = None


class ResponseWrapper:
    def __init__(self, data: Dict[Any, Any]):
        self._data = data
        self._text = self._extract_text()
        self._finish_reason = self._extract_finish_reason()
        self._prompt_token_count = self._extract_prompt_token_count()
        self._candidates_token_count = self._extract_candidates_token_count()
        self._total_token_count = self._extract_total_token_count()
        self._thoughts = self._extract_thoughts()
        self._json_dumps = json.dumps(self._data, indent=4, ensure_ascii=False)

    def _extract_thoughts(self) -> Optional[str]:
        try:
            for part in self._data['candidates'][0]['content']['parts']:
                if 'thought' in part:
                    return part['text']
            return ""
        except (KeyError, IndexError):
            return ""

    def _extract_text(self) -> str:
        try:
            for part in self._data['candidates'][0]['content']['parts']:
                if 'thought' not in part:
                    return part['text']
            return ""
        except (KeyError, IndexError):
            return ""

    def _extract_finish_reason(self) -> Optional[str]:
        try:
            return self._data['candidates'][0].get('finishReason')
        except (KeyError, IndexError):
            return None

    def _extract_prompt_token_count(self) -> Optional[int]:
        try:
            return self._data['usageMetadata'].get('promptTokenCount')
        except (KeyError):
            return None

    def _extract_candidates_token_count(self) -> Optional[int]:
        try:
            return self._data['usageMetadata'].get('candidatesTokenCount')
        except (KeyError):
            return None

    def _extract_total_token_count(self) -> Optional[int]:
        try:
            return self._data['usageMetadata'].get('totalTokenCount')
        except (KeyError):
            return None

    @property
    def text(self) -> str:
        return self._text

    @property
    def finish_reason(self) -> Optional[str]:
        return self._finish_reason

    @property
    def prompt_token_count(self) -> Optional[int]:
        return self._prompt_token_count

    @property
    def candidates_token_count(self) -> Optional[int]:
        return self._candidates_token_count

    @property
    def total_token_count(self) -> Optional[int]:
        return self._total_token_count

    @property
    def thoughts(self) -> Optional[str]:
        return self._thoughts

    @property
    def json_dumps(self) -> str:
        return self._json_dumps

class APIKeyManager:
    def __init__(self):
        self.api_keys = re.findall(r"AIzaSy[a-zA-Z0-9_-]{33}", os.environ.get('KeyArray'))
        self.current_index = random.randint(0, len(self.api_keys) - 1)

    def get_available_key(self):
        num_keys = len(self.api_keys)
        for _ in range(num_keys):
            if self.current_index >= num_keys:
                self.current_index = 0
            current_key = self.api_keys[self.current_index]
            self.current_index += 1

            if current_key not in api_key_blacklist:
                return current_key

        logger.error("所有API key都已耗尽或被暂时禁用,请重新配置或稍后重试")
        return None

    def show_all_keys(self):
        logger.info(f"当前可用API key个数: {len(self.api_keys)} ")
        for i, api_key in enumerate(self.api_keys):
            logger.info(f"API Key{i}: {api_key[:8]}...{api_key[-3:]}")

    def blacklist_key(self, key):
        logger.warning(f"{key[:8]} → 暂时禁用 {api_key_blacklist_duration} 秒")
        api_key_blacklist.add(key)

        scheduler.add_job(lambda: api_key_blacklist.discard(key), 'date', run_date=datetime.now() + timedelta(seconds=api_key_blacklist_duration))

key_manager = APIKeyManager()
key_manager.show_all_keys()
current_api_key = key_manager.get_available_key()

def switch_api_key():
    global current_api_key
    key = key_manager.get_available_key()
    if key:
      current_api_key = key
      logger.info(f"API key 替换为 → {current_api_key[:8]}...{current_api_key[-3:]}")
    else:
      logger.error("API key 替换失败,所有API key都已耗尽或被暂时禁用,请重新配置或稍后重试")

logger.info(f"当前 API key: {current_api_key[:8]}...{current_api_key[-3:]}")

GEMINI_MODELS = [
    {"id": "text-embedding-004"},
    {"id": "gemini-1.5-flash-8b-latest"},
    {"id": "gemini-1.5-flash-8b-exp-0924"},
    {"id": "gemini-1.5-flash-latest"},
    {"id": "gemini-1.5-flash-exp-0827"},
    {"id": "gemini-1.5-pro-latest"},
    {"id": "gemini-1.5-pro-exp-0827"},
    {"id": "learnlm-1.5-pro-experimental"},
    {"id": "gemini-exp-1114"},
    {"id": "gemini-exp-1121"},
    {"id": "gemini-exp-1206"},
    {"id": "gemini-2.0-flash-exp"},
    {"id": "gemini-2.0-flash-thinking-exp-1219"},
    {"id": "gemini-2.0-flash-thinking-exp-01-21"},
    {"id": "gemini-2.0-pro-exp-02-05"}
]


def is_within_rate_limit(api_key):
    now = datetime.now()
    if api_key not in request_counts:
        request_counts[api_key] = deque()

    while request_counts[api_key] and request_counts[api_key][0] < now - timedelta(seconds=LIMIT_WINDOW):
        request_counts[api_key].popleft()

    if len(request_counts[api_key]) >= MAX_REQUESTS:
        earliest_request_time = request_counts[api_key][0]
        wait_time = (earliest_request_time + timedelta(seconds=LIMIT_WINDOW)) - now
        return False, wait_time.total_seconds()
    else:
        return True, 0

def increment_request_count(api_key):
    now = datetime.now()
    if api_key not in request_counts:
        request_counts[api_key] = deque()
    request_counts[api_key].append(now)

def handle_api_error(error, attempt, current_api_key):
    if attempt > MAX_RETRIES:
        logger.error(f"{MAX_RETRIES} 次尝试后仍然失败,请修改预设或输入")
        return 0, jsonify({
            'error': {
                'message': f"{MAX_RETRIES} 次尝试后仍然失败,请修改预设或输入",
                'type': 'max_retries_exceeded'
            }
        })

    if isinstance(error, requests.exceptions.HTTPError):
        status_code = error.response.status_code

        if status_code == 400:

            try:
                error_data = error.response.json()
                if 'error' in error_data:
                    if error_data['error'].get('code') == "invalid_argument":
                        logger.error(f"{current_api_key[:8]} ... {current_api_key[-3:]} → 无效,可能已过期或被删除")
                        key_manager.blacklist_key(current_api_key)
                        switch_api_key()
                        return 0, None
                    error_message = error_data['error'].get('message', 'Bad Request')
                    error_type = error_data['error'].get('type', 'invalid_request_error')
                    logger.warning(f"400 错误请求: {error_message}")
                    return 2, jsonify({'error': {'message': error_message, 'type': error_type}})
            except ValueError:
                logger.warning("400 错误请求:响应不是有效的JSON格式")
                return 2, jsonify({'error': {'message': '', 'type': 'invalid_request_error'}})

        elif status_code == 429:
            logger.warning(
                f"{current_api_key[:8]} ... {current_api_key[-3:]} → 429 官方资源耗尽 → 立即重试..."
            )
            key_manager.blacklist_key(current_api_key)
            switch_api_key()
            return 0, None

        elif status_code == 403:
            logger.error(
                f"{current_api_key[:8]} ... {current_api_key[-3:]} → 403 权限被拒绝,该 API KEY 可能已经被官方封禁"
            )
            key_manager.blacklist_key(current_api_key)
            switch_api_key()
            return 0, None

        elif status_code == 500:
            logger.warning(
                f"{current_api_key[:8]} ... {current_api_key[-3:]} → 500 服务器内部错误 → 立即重试..."
            )
            switch_api_key()
            return 0, None

        elif status_code == 503:
            logger.warning(
                f"{current_api_key[:8]} ... {current_api_key[-3:]} → 503 服务不可用 → 立即重试..."
            )
            switch_api_key()
            return 0, None

        else:
            logger.warning(
                f"{current_api_key[:8]} ... {current_api_key[-3:]}{status_code} 未知错误/模型不可用 → 不重试..."
            )
            switch_api_key()
            return 2, None

    elif isinstance(error, requests.exceptions.ConnectionError):
        delay = min(RETRY_DELAY * (2 ** attempt), MAX_RETRY_DELAY)
        logger.warning(f"连接错误 → 立即重试...")
        time.sleep(delay)
        return 0, None

    elif isinstance(error, requests.exceptions.Timeout):
        delay = min(RETRY_DELAY * (2 ** attempt), MAX_RETRY_DELAY)
        logger.warning(f"请求超时 → 立即重试...")
        time.sleep(delay)
        return 0, None

    else:
        logger.error(f"发生未知错误: {error}")
        return 0, jsonify({
            'error': {
                'message': f"发生未知错误: {error}",
                'type': 'unknown_error'
            }
        })

@app.route('/hf/v1/chat/completions', methods=['POST'])
def chat_completions():
    is_authenticated, auth_error, status_code = func.authenticate_request(request)
    if not is_authenticated:
        return auth_error if auth_error else jsonify({'error': '未授权'}), status_code if status_code else 401

    request_data = request.get_json()
    messages = request_data.get('messages', [])
    model = request_data.get('model', 'gemini-2.0-flash-exp')
    temperature = request_data.get('temperature', 1)
    max_tokens = request_data.get('max_tokens', 8192)
    show_thoughts = request_data.get('show_thoughts', False)
    stream = request_data.get('stream', False)
    use_system_prompt = request_data.get('use_system_prompt', False)
    hint = "流式" if stream else "非流"
    logger.info(f"\n{model} [{hint}] → {current_api_key[:8]}...{current_api_key[-3:]}")
    is_thinking = 'thinking' in model
    api_version = 'v1alpha' if is_thinking else 'v1beta'
    response_type = 'streamGenerateContent' if stream else 'generateContent'
    is_SSE = '&alt=sse' if stream else ''

    contents, system_instruction, error_response = func.process_messages_for_gemini(messages, use_system_prompt)

    if error_response:
        logger.error(f"处理输入消息时出错↙\n {error_response}")
        return jsonify(error_response), 400

    def do_request(current_api_key, attempt):
        isok, time_remaining = is_within_rate_limit(current_api_key)
        if not isok:
            logger.warning(f"暂时超过限额,该API key将在 {time_remaining} 秒后启用...")
            switch_api_key()
            return 0, None

        increment_request_count(current_api_key)


        url = f"https://generativelanguage.googleapis.com/{api_version}/models/{model}:{response_type}?key={current_api_key}{is_SSE}"
        headers = {
            "Content-Type": "application/json",
        }

        data = {
            "contents": contents,
            "generationConfig": {
                "temperature": temperature,
                "maxOutputTokens": max_tokens,
            },
            "safetySettings": safety_settings_g2 if 'gemini-2.0-flash-exp' in model else safety_settings,
        }
        if system_instruction:
            data["system_instruction"] = system_instruction

        try:
            response = requests.post(url, headers=headers, json=data, stream=True)
            response.raise_for_status()

            if stream:
                return 1, response
            else:
                return 1, ResponseWrapper(response.json())
        except requests.exceptions.RequestException as e:
            return handle_api_error(e, attempt, current_api_key)

    def generate_stream(response):
        logger.info(f"流式开始 →")
        buffer = b""
        try:
            for line in response.iter_lines():
                if not line:
                    continue
                try:
                    if line.startswith(b'data: '):
                        line = line[6:]

                    buffer += line

                    try:
                        data = json.loads(buffer.decode('utf-8'))
                        buffer = b""
                        if 'candidates' in data and data['candidates']:
                            candidate = data['candidates'][0]
                            if 'content' in candidate:
                                content = candidate['content']
                                if 'parts' in content and content['parts']:
                                    parts = content['parts']
                                    if is_thinking and not show_thoughts:
                                        parts = [part for part in parts if not part.get('thought')]
                                    if parts:
                                        text = parts[0].get('text', '')
                                        finish_reason = candidate.get('finishReason')

                                        if text:
                                            data = {
                                                'choices': [{
                                                    'delta': {
                                                        'content': text
                                                    },
                                                    'finish_reason': finish_reason,
                                                    'index': 0
                                                }],
                                                'object': 'chat.completion.chunk'
                                            }
                                            yield f"data: {json.dumps(data)}\n\n"

                            if candidate.get("finishReason") and candidate.get("finishReason") != "STOP":
                                error_message = {
                                    "error": {
                                        "code": "content_filter",
                                        "message": f"模型的响应因违反内容政策而被标记:{candidate.get('finishReason')}",
                                        "status": candidate.get("finishReason"),
                                        "details": []
                                    }
                                }
                                logger.warning(f"模型的响应因违反内容政策而被标记: {candidate.get('finishReason')}")
                                yield f"data: {json.dumps(error_message)}\n\n"
                                break

                            if 'safetyRatings' in candidate:
                                for rating in candidate['safetyRatings']:
                                    if rating['probability'] == 'HIGH':
                                        error_message = {
                                            "error": {
                                                "code": "content_filter",
                                                "message": f"模型的响应因高概率被标记为 {rating['category']}",
                                                "status": "SAFETY_RATING_HIGH",
                                                "details": [rating]
                                            }
                                        }
                                        logger.warning(f"模型的响应因高概率被标记为 {rating['category']}")
                                        yield f"data: {json.dumps(error_message)}\n\n"
                                        break
                                else:
                                    continue
                                break

                    except json.JSONDecodeError:
                        logger.debug(f"JSON解析错误, 当前缓冲区内容: {buffer}")
                        continue

                except Exception as e:
                    logger.error(f"流式处理期间发生错误: {e}, 原始数据行↙\n{line}")
                    yield f"data: {json.dumps({'error': str(e)})}\n\n"

            else:
                yield f"data: {json.dumps({'choices': [{'delta': {}, 'finish_reason': 'stop', 'index': 0}]})}\n\n"
                logger.info(f"流式结束 ←")
                logger.info(f"200!")
        except Exception as e:
            logger.error(f"流式处理错误↙\n{e}")
            yield f"data: {json.dumps({'error': str(e)})}\n\n"

    attempt = 0
    success = 0
    response = None
    for attempt in range(1, MAX_RETRIES + 1):
        logger.info(f"第 {attempt}/{MAX_RETRIES} 次尝试 ...")
        success, response = do_request(current_api_key, attempt)

        if success == 0:
            continue
        elif success == 1 and response is None:
            continue
        elif success == 1 and stream:
            return Response(
                stream_with_context(generate_stream(response)),
                mimetype='text/event-stream'
            )
        elif success == 1 and isinstance(response, ResponseWrapper):
            try:
                text_content = response.text
                prompt_tokens = response.prompt_token_count
                completion_tokens = response.candidates_token_count
                total_tokens = response.total_token_count
                finish_reason = response.finish_reason

                if text_content == '':
                    error_message = None
                    if response._data and 'error' in response._data:
                        error_message = response._data['error'].get('message')
                    if error_message:
                        logger.error(f"生成内容失败,API 返回错误: {error_message}")
                    else:
                        logger.error(f"生成内容失败: text_content 为空")
                    continue

                if is_thinking and show_thoughts:
                    text_content = response.thoughts + '\n' + text_content

            except AttributeError as e:
                logger.error(f"处理响应失败,缺少必要的属性: {e}")
                logger.error(f"原始响应: {response._data}")
                continue

            except Exception as e:
                logger.error(f"处理响应失败: {e}")
                continue

            response_data = {
                'id': 'chatcmpl-xxxxxxxxxxxx',
                'object': 'chat.completion',
                'created': int(datetime.now().timestamp()),
                'model': model,
                'choices': [{
                    'index': 0,
                    'message': {
                        'role': 'assistant',
                        'content': text_content
                    },
                    'finish_reason': finish_reason
                }],
                'usage': {
                    'prompt_tokens': prompt_tokens,
                    'completion_tokens': completion_tokens,
                    'total_tokens': total_tokens
                }
            }
            logger.info(f"200!")
            return jsonify(response_data)
        elif success == 1 and isinstance(response, tuple):
            return response[1], response[0]
        elif success == 2:
            logger.error(f"{model} 可能暂时不可用,请更换模型或未来一段时间再试")
            response = {
                'error': {
                    'message': f'{model} 可能暂时不可用,请更换模型或未来一段时间再试',
                    'type': 'internal_server_error'
                }
            }
            return jsonify(response), 503
    else:
        logger.error(f"{MAX_RETRIES} 次尝试均失败,请重试或等待官方恢复")
        response = {
            'error': {
                'message': f'{MAX_RETRIES} 次尝试均失败,请重试或等待官方恢复',
                'type': 'internal_server_error'
            }
        }
        return jsonify(response), 500 if response is not None else 503

@app.route('/hf/v1/models', methods=['GET'])
def list_models():
    response = {"object": "list", "data": GEMINI_MODELS}
    return jsonify(response)

@app.route('/hf/v1/embeddings', methods=['POST'])
def embeddings():
    data = request.get_json()
    model_input = data.get("input")
    model = data.get("model", "text-embedding-004")
    if not model_input:
        return jsonify({"error": "没有提供输入"}), 400

    if isinstance(model_input, str):
        model_input = [model_input]

    gemini_request = {
        "model": f"models/{model}",
        "content": {
            "parts": [{"text": text} for text in model_input]
        }
    }

    gemini_url = f"https://generativelanguage.googleapis.com/v1beta/models/{model}:embedContent?key={current_api_key}"
    headers = {"Content-Type": "application/json"}
    try:
        gemini_response = requests.post(gemini_url, json=gemini_request, headers=headers)
        gemini_response.raise_for_status()

        response_json = gemini_response.json()
        embeddings_data = []
        if 'embedding' in response_json:
          embeddings_data.append({
              "object": "embedding",
              "embedding": response_json['embedding']['values'],
              "index": 0,
          })
        elif 'embeddings' in response_json:
          for i, embedding in enumerate(response_json['embeddings']):
              embeddings_data.append({
                  "object": "embedding",
                  "embedding": embedding['values'],
                  "index": i,
              })

        client_response = {
            "object": "list",
            "data": embeddings_data,
            "model": model,
            "usage": {
                "prompt_tokens": 0,
                "total_tokens": 0,
            },
        }
        switch_api_key()
        return jsonify(client_response)

    except requests.exceptions.RequestException as e:
        print(f"请求Embeddings失败↙\: {e}")
        return jsonify({"error": str(e)}), 500

if __name__ == '__main__':
    scheduler = BackgroundScheduler()

    scheduler.start()
    logger.info(f"Reminiproxy v2.3.5 启动")
    logger.info(f"最大尝试次数/MaxRetries: {MAX_RETRIES}")
    logger.info(f"最大请求次数/MaxRequests: {MAX_REQUESTS}")
    logger.info(f"请求限额窗口/LimitWindow: {LIMIT_WINDOW} 秒")

    app.run(debug=True, host='0.0.0.0', port=7860)