Pash1986's picture
Update app.py
2251e58 verified
import gradio as gr
from pymongo import MongoClient
from PIL import Image
import base64
import os
import io
import boto3
import json
# AWS Bedrock client setup
bedrock_runtime = boto3.client('bedrock-runtime',
aws_access_key_id=os.environ.get('AWS_ACCESS_KEY'),
aws_secret_access_key=os.environ.get('AWS_SECRET_KEY'),
region_name="us-east-1")
# Function to construct the request body for Bedrock
def construct_bedrock_body(base64_string, text):
if text:
return json.dumps({
"inputImage": base64_string,
"embeddingConfig": {"outputEmbeddingLength": 1024},
"inputText": text
})
return json.dumps({
"inputImage": base64_string,
"embeddingConfig": {"outputEmbeddingLength": 1024},
})
# Function to get the embedding from Bedrock model
def get_embedding_from_titan_multimodal(body):
response = bedrock_runtime.invoke_model(
body=body,
modelId="amazon.titan-embed-image-v1",
accept="application/json",
contentType="application/json",
)
response_body = json.loads(response.get("body").read())
return response_body["embedding"]
# MongoDB setup
uri = os.environ.get('MONGODB_ATLAS_URI')
client = MongoClient(uri)
db_name = 'celebrity_1000_embeddings'
collection_name = 'celeb_images'
celeb_images = client[db_name][collection_name]
# Function to generate image description using Claude 3 Sonnet
def generate_image_description_with_claude(images_base64_strs, image_base64):
claude_body = json.dumps({
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": 1000,
"system": "Please act as face comperison analyzer.",
"messages": [{
"role": "user",
"content": [
{"type": "image", "source": {"type": "base64", "media_type": "image/jpeg", "data": image_base64}},
{"type": "image", "source": {"type": "base64", "media_type": "image/jpeg", "data": images_base64_strs[0]}},
{"type": "image", "source": {"type": "base64", "media_type": "image/jpeg", "data": images_base64_strs[1]}},
{"type": "image", "source": {"type": "base64", "media_type": "image/jpeg", "data": images_base64_strs[2]}},
{"type": "text", "text": "Please let the user know how his first image is similar to the other 3 and which one is the most similar?"}
]
}]
})
claude_response = bedrock_runtime.invoke_model(
body=claude_body,
modelId="anthropic.claude-3-sonnet-20240229-v1:0",
accept="application/json",
contentType="application/json",
)
response_body = json.loads(claude_response.get("body").read())
# Assuming the response contains a field 'content' with the description
return response_body["content"][0].get("text", "No description available")
# Main function to start image search
def start_image_search(image, text):
if not image:
raise gr.Error("Please upload an image first, make sure to press the 'Submit' button after selecting the image.")
buffered = io.BytesIO()
image = image.resize((800, 600))
image.save(buffered, format="JPEG", quality=85)
img_byte = buffered.getvalue()
img_base64 = base64.b64encode(img_byte)
img_base64_str = img_base64.decode('utf-8')
body = construct_bedrock_body(img_base64_str, text)
embedding = get_embedding_from_titan_multimodal(body)
doc = list(celeb_images.aggregate([
{
"$vectorSearch": {
"index": "vector_index",
"path": "embeddings",
"queryVector": embedding,
"numCandidates": 15,
"limit": 3
}
}, {"$project": {"image": 1}}
]))
images = []
images_base64_strs = []
for image_doc in doc:
pil_image = Image.open(io.BytesIO(base64.b64decode(image_doc['image'])))
img_byte = io.BytesIO()
pil_image.save(img_byte, format='JPEG')
img_base64 = base64.b64encode(img_byte.getvalue()).decode('utf-8')
images_base64_strs.append(img_base64)
images.append(pil_image)
description = generate_image_description_with_claude(images_base64_strs, img_base64_str)
return images, description
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("""
# MongoDB's Vector Celeb Image Matcher
Upload an image and find the most similar celeb image from the database, along with an AI-generated description.
💪 Make a great pose to impact the search! 🤯
""")
gr.Interface(fn=start_image_search,
inputs=[gr.Image(type="pil", label="Upload an image"), gr.Textbox(label="Enter an adjustment to the image")],
outputs=[gr.Gallery(label="Located images for AI-generated descriptions", show_label=False, elem_id="gallery",
columns=[3], rows=[1], object_fit="contain", height="auto"),gr.Textbox(label="AI Based vision description")]
)
demo.launch()