File size: 3,094 Bytes
daae077
 
 
 
 
 
 
 
 
6221036
daae077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ed6129
 
daae077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a056334
daae077
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import gradio as gr
from pymongo import MongoClient
from PIL import Image
import base64
import os
import io
import boto3
import json


bedrock_runtime = boto3.client('bedrock-runtime',
        aws_access_key_id=os.environ.get('AWS_ACCESS_KEY'),
        aws_secret_access_key=os.environ.get('AWS_SECRET_KEY'),
        region_name="us-east-1"
    )

def construct_bedrock_body(base64_string, text):
    if text:
        return json.dumps(
            {
                "inputImage": base64_string,
                "embeddingConfig": {"outputEmbeddingLength": 1024},
                "inputText": text
            }
        )
        
    return json.dumps(
        {
            "inputImage": base64_string,
            "embeddingConfig": {"outputEmbeddingLength": 1024},
        }
    )


def get_embedding_from_titan_multimodal(body):
    

    response = bedrock_runtime.invoke_model(
        body=body,
        modelId="amazon.titan-embed-image-v1",
        accept="application/json",
        contentType="application/json",
    )

    response_body = json.loads(response.get("body").read())
    return response_body["embedding"]

uri = os.environ.get('MONGODB_ATLAS_URI')
client = MongoClient(uri)
db_name = 'celebrity_1000_embeddings'
collection_name = 'celeb_images'

celeb_images = client[db_name][collection_name]

def start_image_search(image, text):
    if not image:
        ## Alert the user to upload an image
        raise gr.Error("Please upload an image first, make sure to press the 'Submit' button after selecting the image.")
    buffered = io.BytesIO()
    image = image.resize((800, 600))
    image.save(buffered, format="JPEG", quality=85) 
    img_byte = buffered.getvalue()
    # Encode this byte array to Base64
    img_base64 = base64.b64encode(img_byte)

    # Convert Base64 bytes to string for JSON serialization
    img_base64_str = img_base64.decode('utf-8')
    body = construct_bedrock_body(img_base64_str, text)
    embedding = get_embedding_from_titan_multimodal(body)

    doc =  list(celeb_images.aggregate([{
        "$vectorSearch": {
            "index": "vector_index",
            "path" : "embeddings",
            "queryVector": embedding,
            "numCandidates" : 15,
            "limit" : 3
        }}, {"$project": {"image":1}}]))
    
    images = []
    for image in doc:
        images.append(Image.open(io.BytesIO(base64.b64decode(image['image']))))
         
    return images
    
with gr.Blocks() as demo:
    gr.Markdown(
    """
    # MongoDB's Vector Celeb Image matcher  

    Upload an image and find the most similar celeb image from the database. 

    💪 Make a great pose to impact the search! 🤯
   
    """)

    ### Image gradio input
    gr.Interface(
        fn=start_image_search, 
        inputs=[gr.Image(type="pil", label="Upload an image"),gr.Textbox(label="Enter an adjusment to the image")],
       ## outputs=gr.Image(type="pil")
        outputs=gr.Gallery(
        label="Located images", show_label=True, elem_id="gallery"
    , columns=[3], rows=[1], object_fit="contain", height="auto")
    )

demo.launch()