File size: 5,585 Bytes
35208ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#!/usr/bin/env python3
"""

T5 Detoxification API for Hugging Face Spaces

FastAPI service that can be called from external WebSocket servers

"""

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import logging
import time
import os

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI(title="T5 Detoxification API", version="1.0.0")

class TextRequest(BaseModel):
    text: str
    max_length: int = 256

class TextResponse(BaseModel):
    original_text: str
    detoxified_text: str
    processing_time: float
    device: str

class T5Service:
    def __init__(self):
        self.model = None
        self.tokenizer = None
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.loaded = False
        self.load_model()
    
    def load_model(self):
        """Load T5 detoxification model"""
        try:
            logger.info(f"Loading T5 model on {self.device}...")
            
            # Load tokenizer
            self.tokenizer = AutoTokenizer.from_pretrained('s-nlp/t5-paranmt-detox')
            logger.info("Tokenizer loaded")
            
            # Load model with optimization
            self.model = AutoModelForSeq2SeqLM.from_pretrained(
                's-nlp/t5-paranmt-detox',
                torch_dtype=torch.float16 if self.device.type == 'cuda' else torch.float32,
                low_cpu_mem_usage=True
            )
            
            # Move to device and optimize
            self.model = self.model.to(self.device)
            self.model.eval()
            
            # Try torch.compile for better performance
            try:
                if torch.__version__.startswith("2"):
                    self.model = torch.compile(self.model, mode="reduce-overhead")
                    logger.info("Model compiled with torch.compile()")
            except Exception as e:
                logger.warning(f"torch.compile failed: {e}")
            
            self.loaded = True
            logger.info(f"T5 model loaded successfully on {self.device}")
            
        except Exception as e:
            logger.error(f"Failed to load model: {e}")
            self.loaded = False
    
    def detoxify_text(self, text: str, max_length: int = 256) -> str:
        """Detoxify text using T5 model"""
        if not self.loaded or not text.strip():
            return text
        
        try:
            # Tokenize
            inputs = self.tokenizer(
                text.strip(),
                return_tensors="pt",
                truncation=True,
                max_length=max_length
            )
            
            inputs = inputs.to(self.device)
            
            # Generate detoxified text
            with torch.no_grad():
                outputs = self.model.generate(
                    **inputs,
                    max_length=max_length,
                    num_beams=1,
                    do_sample=False,
                    early_stopping=True
                )
            
            # Decode
            detoxified = self.tokenizer.decode(
                outputs[0],
                skip_special_tokens=True
            ).strip()
            
            return detoxified if detoxified else text
            
        except Exception as e:
            logger.error(f"Error in detoxification: {e}")
            return text

# Initialize the service
t5_service = T5Service()

@app.get("/")
async def root():
    """Health check endpoint"""
    return {
        "message": "T5 Detoxification API",
        "status": "running",
        "model_loaded": t5_service.loaded,
        "device": str(t5_service.device)
    }

@app.get("/health")
async def health_check():
    """Detailed health check"""
    return {
        "status": "healthy" if t5_service.loaded else "unhealthy",
        "model_loaded": t5_service.loaded,
        "device": str(t5_service.device),
        "timestamp": time.time()
    }

@app.post("/detoxify", response_model=TextResponse)
async def detoxify_text(request: TextRequest):
    """Detoxify text using T5 model"""
    if not request.text.strip():
        raise HTTPException(status_code=400, detail="Text cannot be empty")
    
    if not t5_service.loaded:
        raise HTTPException(status_code=503, detail="T5 model not loaded")
    
    start_time = time.time()
    
    try:
        detoxified_text = t5_service.detoxify_text(
            request.text, 
            request.max_length
        )
        
        processing_time = time.time() - start_time
        
        return TextResponse(
            original_text=request.text,
            detoxified_text=detoxified_text,
            processing_time=round(processing_time, 3),
            device=str(t5_service.device)
        )
        
    except Exception as e:
        logger.error(f"Error processing request: {e}")
        raise HTTPException(status_code=500, detail="Internal server error")

@app.get("/status")
async def get_status():
    """Get service status"""
    return {
        "model_loaded": t5_service.loaded,
        "device": str(t5_service.device),
        "uptime": time.time()
    }

if __name__ == "__main__":
    import uvicorn
    port = int(os.getenv("PORT", 7860))
    uvicorn.run(app, host="0.0.0.0", port=port)