File size: 3,751 Bytes
			
			| 53c0cc8 c410e03 53c0cc8 c410e03 53c0cc8 c410e03 53c0cc8 c410e03 53c0cc8 c410e03 53c0cc8 c410e03 53c0cc8 214d223 53c0cc8 c410e03 53c0cc8 c410e03 53c0cc8 c410e03 53c0cc8 c410e03 ceffe7d 53c0cc8 13231fe 53c0cc8 df95764 53c0cc8 3e9c92c | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | # app.py β Gradio Space wrapper for modular_graph_and_candidates
from __future__ import annotations
import json
import shutil
import subprocess
import tempfile
from datetime import datetime, timedelta
from functools import lru_cache
from pathlib import Path
import gradio as gr
# ββ refactored helpers ββ
from modular_graph_and_candidates import build_graph_json, generate_html
HF_MAIN_REPO = "https://github.com/huggingface/transformers"
# βββββββββββββββββββββββββββββ cache repo once per 24β―h βββββββββββββββββββββββββββ
@lru_cache(maxsize=4)
def clone_or_cache(repo_url: str) -> Path:
    """Shallowβclone *repo_url* and reuse it for 24β―h."""
    tmp_root = Path(tempfile.gettempdir())
    cache_dir = tmp_root / f"repo_{abs(hash(repo_url))}"
    stamp = cache_dir / ".cloned_at"
    if cache_dir.exists() and stamp.exists():
        try:
            if datetime.utcnow() - datetime.fromisoformat(stamp.read_text().strip()) < timedelta(days=1):
                return cache_dir
        except Exception:
            pass  # fall through β reclone
        shutil.rmtree(cache_dir, ignore_errors=True)
    subprocess.check_call(["git", "clone", "--depth", "1", repo_url, str(cache_dir)])
    stamp.write_text(datetime.utcnow().isoformat())
    return cache_dir
# βββββββββββββββββββββββββββββ main callback βββββββββββββββββββββββββββββββββββββ
def _escape_srcdoc(text: str) -> str:
    """Escape for inclusion inside an <iframe srcdoc="β¦"> attribute."""
    return (
        text.replace("&", "&")
            .replace("\"", """)
            .replace("'", "'")
            .replace("<", "<")
            .replace(">", ">")
    )
def run(repo_url: str, threshold: float, multimodal: bool, sim_method: str):
    # Always download repo for now - let build_graph_json decide if it needs it
    repo_path = clone_or_cache(repo_url)
    graph = build_graph_json(
        transformers_dir=repo_path,
        threshold=threshold,
        multimodal=multimodal,
        sim_method=sim_method,
    )
    raw_html = generate_html(graph)
    iframe_html = (
        f'<iframe style="width:100%;height:85vh;border:none;" '
        f'srcdoc="{_escape_srcdoc(raw_html)}"></iframe>'
    )
    tmp_json = Path(tempfile.mktemp(suffix=".json"))
    tmp_json.write_text(json.dumps(graph), encoding="utf-8")
    return iframe_html, str(tmp_json)
# βββββββββββββββββββββββββββββ UI ββββββββββββββββββββββββββββββββββββββββββββββββ
CUSTOM_CSS = """
#graph_html iframe {height:85vh !important; width:100% !important; border:none;}
"""
with gr.Blocks(css=CUSTOM_CSS) as demo:
    gr.Markdown("## π Modularβcandidate explorer for π€ Transformers")
    with gr.Row():
        repo_in   = gr.Text(value=HF_MAIN_REPO, label="Repo / fork URL")
        thresh    = gr.Slider(0.50, 0.95, value=0.5, step=0.01, label="Similarity β₯")
        multi_cb  = gr.Checkbox(label="Only multimodal models")
        sim_radio = gr.Radio(["jaccard", "embedding"], value="jaccard", label="Similarity metric")
        go_btn    = gr.Button("Build graph")
    html_out  = gr.HTML(elem_id="graph_html", show_label=False)
    json_out  = gr.File(label="Download graph.json")
    go_btn.click(run, [repo_in, thresh, multi_cb, sim_radio], [html_out, json_out])
if __name__ == "__main__":
    demo.launch(allowed_paths=["static"]) |