Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,6 @@ from huggingface_hub import login
|
|
14 |
# Log in with token
|
15 |
login(token=os.getenv("HF_Token"))
|
16 |
|
17 |
-
|
18 |
# Load and preprocess the data
|
19 |
def preprocess_data(file_path):
|
20 |
"""Load and preprocess the CSV data."""
|
@@ -74,7 +73,7 @@ def main_pipeline(file_path, user_query):
|
|
74 |
retrieved_text = "\n".join(results['Knowledge_Text'].tolist())
|
75 |
|
76 |
# Use Llama3.2 for question answering with prompt engineering
|
77 |
-
llm = pipeline("text-generation", model="meta-llama/Llama-3.2-1B-Instruct"
|
78 |
prompt = (
|
79 |
f"You are an expert sports analyst. Based on the following training data, provide a detailed and insightful answer to the user's question. "
|
80 |
f"Always include relevant numerical data in your response. Limit your response to a maximum of 200 words.\n\n"
|
@@ -109,3 +108,4 @@ interface = gr.Interface(
|
|
109 |
)
|
110 |
|
111 |
interface.launch()
|
|
|
|
14 |
# Log in with token
|
15 |
login(token=os.getenv("HF_Token"))
|
16 |
|
|
|
17 |
# Load and preprocess the data
|
18 |
def preprocess_data(file_path):
|
19 |
"""Load and preprocess the CSV data."""
|
|
|
73 |
retrieved_text = "\n".join(results['Knowledge_Text'].tolist())
|
74 |
|
75 |
# Use Llama3.2 for question answering with prompt engineering
|
76 |
+
llm = pipeline("text-generation", model="meta-llama/Llama-3.2-1B-Instruct")
|
77 |
prompt = (
|
78 |
f"You are an expert sports analyst. Based on the following training data, provide a detailed and insightful answer to the user's question. "
|
79 |
f"Always include relevant numerical data in your response. Limit your response to a maximum of 200 words.\n\n"
|
|
|
108 |
)
|
109 |
|
110 |
interface.launch()
|
111 |
+
|