import gradio as gr from huggingface_hub import InferenceClient import torch from TTS.api import TTS import soundfile as sf # Load TTS Model (supports multiple models) tts_model = TTS("tts_models/en/ljspeech/tacotron2-DDC").to("cuda" if torch.cuda.is_available() else "cpu") # Hugging Face LLM client client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response, None # Yielding text response first # Generate speech from text response output_audio_path = "response.wav" tts_model.tts_to_file(text=response, file_path=output_audio_path) yield response, output_audio_path # Yielding audio response # Gradio Chat Interface with Audio Output demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], outputs=[ gr.Textbox(label="Generated Response"), gr.Audio(type="filepath", label="TTS Output"), ], ) if __name__ == "__main__": demo.launch()