Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import torch | |
from TTS.api import TTS | |
import soundfile as sf | |
# Load TTS Model | |
tts_model = TTS("tts_models/en/ljspeech/tacotron2-DDC").to("cuda" if torch.cuda.is_available() else "cpu") | |
# Hugging Face LLM client (DeepSeek R1 7B) | |
client = InferenceClient("deepseek-ai/deepseek-r1-7b") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response, None # Yielding text response first | |
# Generate speech from text response | |
output_audio_path = "response.wav" | |
tts_model.tts_to_file(text=response, file_path=output_audio_path) | |
yield response, output_audio_path # Yielding audio response | |
# Using gr.Blocks() instead of ChatInterface | |
with gr.Blocks() as demo: | |
gr.Markdown("## DeepSeek R1 7B Chatbot with TTS") | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox(label="User Input") | |
system_msg = gr.Textbox(value="You are a friendly Chatbot.", label="System Message") | |
max_tokens = gr.Slider(1, 2048, value=512, step=1, label="Max Tokens") | |
temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature") | |
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)") | |
tts_audio = gr.Audio(type="filepath", label="TTS Output") | |
def chat_fn(message, history): | |
return respond(message, history, system_msg.value, max_tokens.value, temperature.value, top_p.value) | |
msg.submit(chat_fn, inputs=[msg, chatbot], outputs=[chatbot, tts_audio]) | |
demo.launch() | |