Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import torch | |
from TTS.api import TTS | |
import os | |
import subprocess | |
# Load TTS Model | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
tts_model = TTS("tts_models/en/ljspeech/tacotron2-DDC").to(device) | |
# Hugging Face LLM Client (DeepSeek R1 7B) | |
client = InferenceClient("deepseek-ai/deepseek-r1-7b") | |
# RVC Model Paths | |
RVC_MODEL_PATH = "zeldabotw.pth" | |
RVC_INDEX_PATH = "zeldabotw.index" | |
# Function to call RVC for voice conversion | |
def convert_voice(input_wav, output_wav): | |
"""Converts the input TTS audio to ZeldaBotW voice using RVC.""" | |
if not os.path.exists(RVC_MODEL_PATH) or not os.path.exists(RVC_INDEX_PATH): | |
raise FileNotFoundError("RVC model files not found: Ensure zeldabotw.pth and zeldabotw.index are in the same directory.") | |
command = f"python infer_rvc.py --input {input_wav} --output {output_wav} --model {RVC_MODEL_PATH} --index {RVC_INDEX_PATH} --pitch_shift 0" | |
process = subprocess.run(command, shell=True, capture_output=True, text=True) | |
if process.returncode != 0: | |
print("RVC conversion failed:", process.stderr) | |
return None | |
return output_wav | |
# Chatbot Response + TTS + RVC | |
def respond( | |
message, history, system_message, max_tokens, temperature, top_p | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: messages.append({"role": "user", "content": val[0]}) | |
if val[1]: messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response, None, None # Text first | |
# Generate Speech from Text | |
tts_audio_path = "tts_output.wav" | |
tts_model.tts_to_file(text=response, file_path=tts_audio_path) | |
# Convert TTS output to ZeldaBotW voice | |
rvc_audio_path = "rvc_output.wav" | |
rvc_converted_path = convert_voice(tts_audio_path, rvc_audio_path) | |
yield response, tts_audio_path, rvc_converted_path # Send text, TTS, and RVC output | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("## DeepSeek R1 7B Chatbot with ZeldaBotW Voice") | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox(label="User Input") | |
system_msg = gr.Textbox(value="You are a friendly Chatbot.", label="System Message") | |
max_tokens = gr.Slider(1, 2048, value=512, step=1, label="Max Tokens") | |
temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature") | |
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)") | |
tts_audio = gr.Audio(type="filepath", label="TTS Output") | |
rvc_audio = gr.Audio(type="filepath", label="RVC ZeldaBotW Voice") | |
def chat_fn(message, history): | |
return respond(message, history, system_msg.value, max_tokens.value, temperature.value, top_p.value) | |
msg.submit(chat_fn, inputs=[msg, chatbot], outputs=[chatbot, tts_audio, rvc_audio]) | |
demo.launch() | |