Ollama_TTS_RVC / app.py
MoiMoi-01's picture
Update app.py
cbcbc7e verified
raw
history blame
3.18 kB
import gradio as gr
from huggingface_hub import InferenceClient
import torch
from TTS.api import TTS
import os
import subprocess
# Load TTS Model
device = "cuda" if torch.cuda.is_available() else "cpu"
tts_model = TTS("tts_models/en/ljspeech/tacotron2-DDC").to(device)
# Hugging Face LLM Client (DeepSeek R1 7B)
client = InferenceClient("deepseek-ai/deepseek-r1-7b")
# RVC Model Paths
RVC_MODEL_PATH = "zeldabotw.pth"
RVC_INDEX_PATH = "zeldabotw.index"
# Function to call RVC for voice conversion
def convert_voice(input_wav, output_wav):
"""Converts the input TTS audio to ZeldaBotW voice using RVC."""
if not os.path.exists(RVC_MODEL_PATH) or not os.path.exists(RVC_INDEX_PATH):
raise FileNotFoundError("RVC model files not found: Ensure zeldabotw.pth and zeldabotw.index are in the same directory.")
command = f"python infer_rvc.py --input {input_wav} --output {output_wav} --model {RVC_MODEL_PATH} --index {RVC_INDEX_PATH} --pitch_shift 0"
process = subprocess.run(command, shell=True, capture_output=True, text=True)
if process.returncode != 0:
print("RVC conversion failed:", process.stderr)
return None
return output_wav
# Chatbot Response + TTS + RVC
def respond(
message, history, system_message, max_tokens, temperature, top_p
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]: messages.append({"role": "user", "content": val[0]})
if val[1]: messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p
):
token = message.choices[0].delta.content
response += token
yield response, None, None # Text first
# Generate Speech from Text
tts_audio_path = "tts_output.wav"
tts_model.tts_to_file(text=response, file_path=tts_audio_path)
# Convert TTS output to ZeldaBotW voice
rvc_audio_path = "rvc_output.wav"
rvc_converted_path = convert_voice(tts_audio_path, rvc_audio_path)
yield response, tts_audio_path, rvc_converted_path # Send text, TTS, and RVC output
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## DeepSeek R1 7B Chatbot with ZeldaBotW Voice")
chatbot = gr.Chatbot()
msg = gr.Textbox(label="User Input")
system_msg = gr.Textbox(value="You are a friendly Chatbot.", label="System Message")
max_tokens = gr.Slider(1, 2048, value=512, step=1, label="Max Tokens")
temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)")
tts_audio = gr.Audio(type="filepath", label="TTS Output")
rvc_audio = gr.Audio(type="filepath", label="RVC ZeldaBotW Voice")
def chat_fn(message, history):
return respond(message, history, system_msg.value, max_tokens.value, temperature.value, top_p.value)
msg.submit(chat_fn, inputs=[msg, chatbot], outputs=[chatbot, tts_audio, rvc_audio])
demo.launch()