Mohssinibra's picture
Update app.py
f9b4788 verified
raw
history blame
5.18 kB
import gradio as gr
import librosa
import numpy as np
import whisperx
from transformers import pipeline
from pydub import AudioSegment
import os
import scipy.signal as signal
import torch
from pydub.silence import detect_nonsilent # Correct import
hf_token = os.getenv('diarizationToken')
print("Initializing Speech-to-Text Model...")
stt_pipeline = pipeline("automatic-speech-recognition", model="boumehdi/wav2vec2-large-xlsr-moroccan-darija")
print("Model Loaded Successfully.")
# Initialize WhisperX with diarization (not transcription)
device = "cuda" if torch.cuda.is_available() else "cpu"
diarize_model = whisperx.DiarizationPipeline(use_auth_token=hf_token, device=device)
print("WhisperX Model Loaded Successfully for Diarization.")
def remove_phone_tonalities(audio, sr):
nyquist = 0.5 * sr
low_cut = 300 / nyquist
high_cut = 3400 / nyquist
b, a = signal.butter(1, [low_cut, high_cut], btype='band')
filtered_audio = signal.filtfilt(b, a, audio)
return filtered_audio
def convert_audio_to_wav(audio_path):
# Convert any audio format to WAV using pydub
sound = AudioSegment.from_file(audio_path)
wav_path = "converted_audio.wav"
sound.export(wav_path, format="wav")
return wav_path
import gradio as gr
import librosa
import numpy as np
import whisperx
from transformers import pipeline
from pydub import AudioSegment
import os
import scipy.signal as signal
import torch
import pandas as pd
from pydub.silence import detect_nonsilent
hf_token = os.getenv('diarizationToken')
print("Initializing Speech-to-Text Model...")
stt_pipeline = pipeline("automatic-speech-recognition", model="boumehdi/wav2vec2-large-xlsr-moroccan-darija")
print("Model Loaded Successfully.")
# Initialize WhisperX with diarization
device = "cuda" if torch.cuda.is_available() else "cpu"
whisper_model = whisperx.load_model("large-v2", device)
diarize_model = whisperx.DiarizationPipeline(use_auth_token=hf_token, device=device)
print("WhisperX Model Loaded Successfully.")
def remove_phone_tonalities(audio, sr):
nyquist = 0.5 * sr
low_cut = 300 / nyquist
high_cut = 3400 / nyquist
b, a = signal.butter(1, [low_cut, high_cut], btype='band')
filtered_audio = signal.filtfilt(b, a, audio)
return filtered_audio
def process_audio(audio_path):
print(f"Received audio file: {audio_path}")
try:
# Load the audio file using librosa
audio, sr = librosa.load(audio_path, sr=None, duration=30)
print(f"Audio loaded: {len(audio)} samples at {sr} Hz")
# Remove phone tonalities (if any)
audio = remove_phone_tonalities(audio, sr)
print("Phone tonalities removed")
# Convert to AudioSegment for silence detection
sound = AudioSegment.from_wav(audio_path)
# Silence detection: split based on silence
min_silence_len = 1000 # minimum silence length in ms
silence_thresh = sound.dBFS - 14 # threshold for silence (adjust as needed)
# Correct usage of detect_nonsilent from pydub.silence
nonsilent_chunks = detect_nonsilent(
sound,
min_silence_len=min_silence_len,
silence_thresh=silence_thresh
)
non_silent_chunks = [
sound[start:end] for start, end in nonsilent_chunks
]
# Apply diarization (WhisperX)
diarization = diarize_model(audio_path)
# Check if diarization is a DataFrame and process accordingly
if isinstance(diarization, pd.DataFrame):
print("Diarization is a DataFrame")
diarization = diarization.to_dict(orient="records") # Convert DataFrame to a list of dicts
transcriptions = []
for chunk in non_silent_chunks:
chunk.export("chunk.wav", format="wav")
chunk_audio, chunk_sr = librosa.load("chunk.wav", sr=None)
transcription = stt_pipeline(chunk_audio) # Transcribe using Wav2Vec2
# Match transcription segment with diarization result
speaker_label = "Unknown"
for speaker in diarization:
spk_start, spk_end, label = speaker['start'], speaker['end'], speaker['label']
# Adjust timestamp matching
if spk_start <= (chunk.start_time / 1000) <= spk_end: # Convert ms to seconds
speaker_label = label
break
transcriptions.append(f"Speaker {speaker_label}: {transcription['text']}")
# Clean up temporary files
os.remove("chunk.wav")
return "\n".join(transcriptions)
except Exception as e:
print(f"Error: {str(e)}")
return f"Error: {str(e)}"
# Create Gradio interface
iface = gr.Interface(
fn=process_audio,
inputs=gr.Audio(type="filepath"),
outputs="text",
title="Speaker Diarization & Transcription",
description="Upload an audio file to detect speakers and transcribe speech for each segment."
)
print("Launching Gradio Interface...")
iface.launch()
print("Gradio Interface Launched Successfully.")