Mohssinibra's picture
diarizationNative
d19f3e0 verified
raw
history blame
2.32 kB
import gradio as gr
import librosa
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from transformers import pipeline
print("Chargement du modèle Wav2Vec2...")
stt_pipeline = pipeline("automatic-speech-recognition", model="boumehdi/wav2vec2-large-xlsr-moroccan-darija")
print("Modèle chargé avec succès !")
def process_audio(audio_path):
print(f"Fichier reçu : {audio_path}")
try:
# Charger uniquement les 30 premières secondes
audio, sr = librosa.load(audio_path, sr=None, duration=30)
print(f"Audio chargé : {len(audio)} échantillons à {sr} Hz")
# Extraction des MFCC
mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=13)
print(f"MFCC extrait, shape: {mfccs.shape}")
# Normalisation
scaler = StandardScaler()
mfccs_scaled = scaler.fit_transform(mfccs.T)
print("MFCC normalisé.")
# Clustering avec KMeans
kmeans = KMeans(n_clusters=2, random_state=42, n_init=10)
speaker_labels = kmeans.fit_predict(mfccs_scaled)
print(f"Clustering terminé, {len(set(speaker_labels))} locuteurs détectés.")
# Segmentation et transcription
transcriptions = []
segment_duration = len(audio) // len(speaker_labels)
print("Début de la transcription...")
for i in range(0, len(audio), sr * 5):
segment = audio[i : i + sr * 5]
if len(segment) < sr:
continue
transcription = stt_pipeline(segment) # Transcription
transcriptions.append(f"Speaker {speaker_labels[i // segment_duration]}: {transcription['text']}")
print(f"Segment {i // sr}-{(i + sr * 5) // sr}s transcrit.")
print("Transcription terminée !")
return "\n".join(transcriptions)
except Exception as e:
print(f"Erreur : {e}")
return "Une erreur s'est produite."
# Interface Gradio
print("Démarrage de Gradio...")
iface = gr.Interface(
fn=process_audio,
inputs=gr.Audio(type="filepath"),
outputs="text",
title="Speaker Diarization & Transcription",
description="Upload an audio file to detect speakers and transcribe speech for each segment."
)
iface.launch()
print("Interface lancée avec succès !")