Spaces:
Sleeping
Sleeping
..
Browse files
app.py
CHANGED
@@ -1,43 +1,42 @@
|
|
1 |
# Install necessary packages (only for local environment)
|
2 |
-
# !pip install pandas
|
3 |
|
4 |
import pandas as pd
|
5 |
import gradio as gr
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
# Function to load model and make predictions
|
9 |
def forecast(csv_file):
|
10 |
data = pd.read_csv(csv_file.name, parse_dates=['timestamp_column'])
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
target_columns=['value1', 'value2'], # Replace with your target column names
|
16 |
-
prediction_length=96,
|
17 |
-
context_length=512,
|
18 |
-
scaling=True
|
19 |
-
)
|
20 |
-
processed_data = tsp.fit_transform(data)
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
num_input_channels=tsp.num_input_channels
|
25 |
-
)
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
forecasts = pipeline(data)
|
32 |
-
return forecasts.to_csv(index=False)
|
33 |
|
34 |
-
#
|
35 |
iface = gr.Interface(
|
36 |
fn=forecast,
|
37 |
inputs=gr.File(label="Upload CSV File"),
|
38 |
outputs=gr.File(label="Download Forecasts"),
|
39 |
-
title="Time Series Forecasting with
|
40 |
-
description="Upload a CSV file with a timestamp column to generate forecasts."
|
41 |
)
|
42 |
|
43 |
iface.launch()
|
|
|
1 |
# Install necessary packages (only for local environment)
|
2 |
+
# !pip install pandas gradio transformers torch
|
3 |
|
4 |
import pandas as pd
|
5 |
import gradio as gr
|
6 |
+
import torch
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
+
|
9 |
+
# Load the Hugging Face forecasting model
|
10 |
+
def load_model():
|
11 |
+
model_name = "Ankur87/Llama2_Time_series_forecasting_7.0" # Using the specified model
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
return model, tokenizer
|
15 |
+
|
16 |
+
model, tokenizer = load_model()
|
17 |
|
|
|
18 |
def forecast(csv_file):
|
19 |
data = pd.read_csv(csv_file.name, parse_dates=['timestamp_column'])
|
20 |
|
21 |
+
# Convert data to a format suitable for the model
|
22 |
+
input_text = data.to_json()
|
23 |
+
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
with torch.no_grad():
|
26 |
+
predictions = model.generate(**inputs, max_length=200)
|
|
|
|
|
27 |
|
28 |
+
forecast_text = tokenizer.decode(predictions[0], skip_special_tokens=True)
|
29 |
+
forecasts = pd.DataFrame({'forecast': [forecast_text]})
|
30 |
+
forecasts.to_csv("forecasts.csv", index=False)
|
31 |
+
return "forecasts.csv"
|
|
|
|
|
32 |
|
33 |
+
# Gradio Interface
|
34 |
iface = gr.Interface(
|
35 |
fn=forecast,
|
36 |
inputs=gr.File(label="Upload CSV File"),
|
37 |
outputs=gr.File(label="Download Forecasts"),
|
38 |
+
title="Time Series Forecasting with Llama2",
|
39 |
+
description="Upload a CSV file with a timestamp column to generate forecasts using Llama2."
|
40 |
)
|
41 |
|
42 |
iface.launch()
|