Mohssinibra commited on
Commit
6cc8631
·
verified ·
1 Parent(s): c7f59cc
Files changed (1) hide show
  1. app.py +23 -5
app.py CHANGED
@@ -1,7 +1,25 @@
1
- import gradio as gr
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch(share=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import librosa
2
+ import torch
3
+ from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2ForCTC, Wav2Vec2Processor, TrainingArguments, Wav2Vec2FeatureExtractor, Trainer
4
 
5
+ tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
6
+ processor = Wav2Vec2Processor.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija', tokenizer=tokenizer)
7
+ model=Wav2Vec2ForCTC.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija')
8
 
9
+
10
+ # load the audio data (use your own wav file here!)
11
+ input_audio, sr = librosa.load('file.wav', sr=16000)
12
+
13
+ # tokenize
14
+ input_values = processor(input_audio, return_tensors="pt", padding=True).input_values
15
+
16
+ # retrieve logits
17
+ logits = model(input_values).logits
18
+
19
+ tokens = torch.argmax(logits, axis=-1)
20
+
21
+ # decode using n-gram
22
+ transcription = tokenizer.batch_decode(tokens)
23
+
24
+ # print the output
25
+ print(transcription)