STTDARIJAAPI / app.py
Mohssinibra's picture
gradio
e7d0ead verified
raw
history blame
1.77 kB
import gradio as gr
import librosa
import torch
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2ForCTC, Wav2Vec2Processor
# Load tokenizer, processor, and model
tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
processor = Wav2Vec2Processor.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija', tokenizer=tokenizer)
model = Wav2Vec2ForCTC.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija')
# Define the function for transcribing audio
def transcribe(audio):
# Load the audio data from the Gradio input (audio is in the format of a NumPy array)
input_audio = audio
sr = 16000 # Ensure the sample rate is 16000 Hz, which is expected by the model
# Tokenize the audio
input_values = processor(input_audio, return_tensors="pt", padding=True).input_values
# Get the model's logits
logits = model(input_values).logits
# Find the predicted tokens
tokens = torch.argmax(logits, axis=-1)
# Decode the tokens to text
transcription = tokenizer.batch_decode(tokens)
return transcription[0]
# Create the Gradio interface
interface = gr.Interface(
fn=transcribe, # Function to be called when an audio file is uploaded or recorded
inputs=[
gr.Audio(source="upload", type="numpy"), # Allow user to upload an audio file
gr.Audio(source="microphone", type="numpy") # Allow user to record audio from the browser
],
outputs="text", # Output will be a transcription text
title="Moroccan Darija Speech-to-Text", # Interface title
description="Upload an audio file or record audio directly from your microphone to transcribe it into Moroccan Darija."
)
# Launch the interface
interface.launch()