Spaces:
Sleeping
Sleeping
import gradio as gr | |
import librosa | |
import torch | |
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2ForCTC, Wav2Vec2Processor | |
# Load tokenizer, processor, and model | |
tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|") | |
processor = Wav2Vec2Processor.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija', tokenizer=tokenizer) | |
model = Wav2Vec2ForCTC.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija') | |
# Define the function for transcribing audio | |
def transcribe(audio): | |
# Load the audio data from the Gradio input (audio is in the format of a NumPy array) | |
input_audio = audio | |
sr = 16000 # Ensure the sample rate is 16000 Hz, which is expected by the model | |
# Tokenize the audio | |
input_values = processor(input_audio, return_tensors="pt", padding=True).input_values | |
# Get the model's logits | |
logits = model(input_values).logits | |
# Find the predicted tokens | |
tokens = torch.argmax(logits, axis=-1) | |
# Decode the tokens to text | |
transcription = tokenizer.batch_decode(tokens) | |
return transcription[0] | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=transcribe, # Function to be called when an audio file is uploaded or recorded | |
inputs=[ | |
gr.Audio(source="upload", type="numpy"), # Allow user to upload an audio file | |
gr.Audio(source="microphone", type="numpy") # Allow user to record audio from the browser | |
], | |
outputs="text", # Output will be a transcription text | |
title="Moroccan Darija Speech-to-Text", # Interface title | |
description="Upload an audio file or record audio directly from your microphone to transcribe it into Moroccan Darija." | |
) | |
# Launch the interface | |
interface.launch() | |