STTDARIJAAPI / app.py
Mohssinibra's picture
../
d04bf8d verified
raw
history blame
2.22 kB
import gradio as gr
import librosa
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, MBartForConditionalGeneration, MBart50Tokenizer
# Load pre-trained model and processor directly from Hugging Face Hub
model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
# Load translation model
translation_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translation_tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="ar")
def transcribe_audio(audio):
# Load the audio file from Gradio interface
audio_array, sr = librosa.load(audio, sr=16000)
# Tokenize the audio file
input_values = processor(audio_array, return_tensors="pt", padding=True).input_values
# Get the model's logits (predicted token scores)
logits = model(input_values).logits
# Get the predicted tokens
tokens = torch.argmax(logits, axis=-1)
# Decode the tokens into text (Darija transcription)
transcription = processor.decode(tokens[0])
# Translate the transcription to English
translation = translate_text(transcription)
return transcription, translation
def translate_text(text):
# Tokenize the text to translate
inputs = translation_tokenizer(text, return_tensors="pt")
# Generate translated tokens (from Darija to English)
translated_tokens = translation_model.generate(**inputs, forced_bos_token_id=translation_tokenizer.lang_code_to_id["en"])
# Decode the translated tokens into text
translated_text = translation_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
return translated_text
# Create a Gradio interface for uploading audio or recording from the browser
demo = gr.Interface(fn=transcribe_audio,
inputs=gr.Audio(type="filepath"), # Corrected input component
outputs=["text", "text"], # Both transcription and translation outputs
live=True)
demo.launch()
demo.launch(api=True, share=True)