STTDARIJAAPI / app.py
Mohssinibra's picture
.
980dcf2 verified
raw
history blame
1.15 kB
import gradio as gr
import librosa
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
# Load pre-trained model and processor directly from Hugging Face Hub
model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
def transcribe_audio(audio):
# Load the audio file from Gradio interface
audio_array, sr = librosa.load(audio, sr=16000)
# Tokenize the audio file
input_values = processor(audio_array, return_tensors="pt", padding=True).input_values
# Get the model's logits (predicted token scores)
logits = model(input_values).logits
# Get the predicted tokens
tokens = torch.argmax(logits, axis=-1)
# Decode the tokens into text
transcription = processor.decode(tokens[0])
return transcription
# Create a Gradio interface for uploading audio or recording from the browser
demo = gr.Interface(fn=transcribe_audio,
inputs=gr.Audio(source="upload", type="filepath"),
outputs="text")
demo.launch()