Spaces:
Sleeping
Sleeping
import gradio as gr | |
import librosa | |
import torch | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, MBartForConditionalGeneration, MBart50Tokenizer, MarianMTModel, MarianTokenizer | |
# Load pre-trained models | |
model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija") | |
processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija") | |
#translation_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") | |
#translation_tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="ar_AR") | |
# Charger le modèle de traduction Arabe -> Anglais | |
translation_model_name = "Helsinki-NLP/opus-mt-ar-en" | |
translation_model = MarianMTModel.from_pretrained(translation_model_name) | |
translation_tokenizer = MarianTokenizer.from_pretrained(translation_model_name) | |
def transcribe_audio(audio): | |
audio_array, sr = librosa.load(audio, sr=16000) | |
input_values = processor(audio_array, return_tensors="pt", padding=True).input_values | |
logits = model(input_values).logits | |
tokens = torch.argmax(logits, axis=-1) | |
transcription = processor.decode(tokens[0]) | |
translation = translate_text(transcription) | |
return transcription, translation | |
def translate_text(text): | |
inputs = translation_tokenizer(text, return_tensors="pt") | |
translated_tokens = translation_model.generate(**inputs, forced_bos_token_id=translation_tokenizer.lang_code_to_id["en_XX"]) | |
translated_text = translation_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] | |
return translated_text | |
with gr.Blocks() as demo: | |
gr.Markdown("# Speech-to-Text and Translation") | |
audio_input = gr.Audio(type="filepath") | |
submit_button = gr.Button("Submit") | |
transcription_output = gr.Textbox(label="Transcription") | |
translation_output = gr.Textbox(label="Translation") | |
submit_button.click(transcribe_audio, inputs=[audio_input], outputs=[transcription_output, translation_output]) | |
demo.launch() | |