import streamlit as st import torch import torchvision.transforms as transforms from torchvision import models from PIL import Image import json import os with open("domain_config.json", "r") as f: domain_config = json.load(f) class_names = list(domain_config.keys()) num_classes = len(class_names) model = models.mobilenet_v2(weights=models.MobileNet_V2_Weights.IMAGENET1K_V1) model.classifier[1] = torch.nn.Linear(1280, num_classes) model.load_state_dict(torch.load("custom_image_model.pth", map_location=torch.device('cpu'))) model.eval() transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) st.title("📂 AI-Powered Image Categorization") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: image = Image.open(uploaded_file).convert("RGB") st.image(image, caption="Uploaded Image", use_column_width=True) if st.button("Categorize Image"): image_tensor = transform(image).unsqueeze(0) with torch.no_grad(): output = model(image_tensor) probabilities = torch.nn.functional.softmax(output, dim=1) predicted_index = torch.argmax(probabilities, dim=1).item() predicted_category = class_names[predicted_index] confidence = probabilities[0][predicted_index].item() st.success(f"✅ **Predicted Category:** {predicted_category} ({confidence:.2%} confidence)")