import torch import torchvision.transforms as transforms from torchvision import models from PIL import Image import os import shutil import sys # Load class names dynamically from dataset folder dataset_path = "categorized_images" class_names = sorted(os.listdir(dataset_path)) # Get categories from folder names num_classes = len(class_names) # Load trained model model = models.mobilenet_v2(weights=models.MobileNet_V2_Weights.IMAGENET1K_V1) model.classifier[1] = torch.nn.Linear(1280, num_classes) model.load_state_dict(torch.load("custom_image_model.pth", map_location=torch.device('cpu'))) model.eval() # Image transformation transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) def predict_and_categorize(image_path, move=True): """Predict category for an image and move it to the correct folder.""" try: image = Image.open(image_path).convert("RGB") except Exception as e: print(f"āš ļø Error loading image: {e}") return image_tensor = transform(image).unsqueeze(0) with torch.no_grad(): output = model(image_tensor) probabilities = torch.nn.functional.softmax(output, dim=1) predicted_index = torch.argmax(probabilities, dim=1).item() predicted_category = class_names[predicted_index] confidence = probabilities[0][predicted_index].item() print(f"āœ… {image_path} -> **Predicted Category:** {predicted_category} ({confidence:.2%} confidence)") # Move image to categorized_images folder if move: category_folder = os.path.join("categorized_images", predicted_category) os.makedirs(category_folder, exist_ok=True) shutil.move(image_path, os.path.join(category_folder, os.path.basename(image_path))) print(f"šŸ“‚ Moved to: {category_folder}\n") def process_folder(folder_path): """Process all images in a folder.""" if not os.path.exists(folder_path): print(f"āŒ Folder not found: {folder_path}") return for file in os.listdir(folder_path): if file.lower().endswith((".png", ".jpg", ".jpeg")): predict_and_categorize(os.path.join(folder_path, file)) if __name__ == "__main__": if len(sys.argv) > 1: input_path = sys.argv[1] if os.path.isdir(input_path): print(f"\nšŸ“‚ **Processing folder:** {input_path}\n") process_folder(input_path) elif os.path.isfile(input_path): predict_and_categorize(input_path) else: print("āŒ Invalid path. Please provide an image or folder.") else: print("āš ļø Please provide an image or folder path.")