Spaces:
Running
Running
import torch | |
import torchvision.transforms as transforms | |
from torchvision import models | |
from PIL import Image | |
import os | |
import shutil | |
import sys | |
# Load class names dynamically from dataset folder | |
dataset_path = "categorized_images" | |
class_names = sorted(os.listdir(dataset_path)) # Get categories from folder names | |
num_classes = len(class_names) | |
# Load trained model | |
model = models.mobilenet_v2(weights=models.MobileNet_V2_Weights.IMAGENET1K_V1) | |
model.classifier[1] = torch.nn.Linear(1280, num_classes) | |
model.load_state_dict(torch.load("custom_image_model.pth", map_location=torch.device('cpu'))) | |
model.eval() | |
# Image transformation | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
def predict_and_categorize(image_path, move=True): | |
"""Predict category for an image and move it to the correct folder.""" | |
try: | |
image = Image.open(image_path).convert("RGB") | |
except Exception as e: | |
print(f"β οΈ Error loading image: {e}") | |
return | |
image_tensor = transform(image).unsqueeze(0) | |
with torch.no_grad(): | |
output = model(image_tensor) | |
probabilities = torch.nn.functional.softmax(output, dim=1) | |
predicted_index = torch.argmax(probabilities, dim=1).item() | |
predicted_category = class_names[predicted_index] | |
confidence = probabilities[0][predicted_index].item() | |
print(f"β {image_path} -> **Predicted Category:** {predicted_category} ({confidence:.2%} confidence)") | |
# Move image to categorized_images folder | |
if move: | |
category_folder = os.path.join("categorized_images", predicted_category) | |
os.makedirs(category_folder, exist_ok=True) | |
shutil.move(image_path, os.path.join(category_folder, os.path.basename(image_path))) | |
print(f"π Moved to: {category_folder}\n") | |
def process_folder(folder_path): | |
"""Process all images in a folder.""" | |
if not os.path.exists(folder_path): | |
print(f"β Folder not found: {folder_path}") | |
return | |
for file in os.listdir(folder_path): | |
if file.lower().endswith((".png", ".jpg", ".jpeg")): | |
predict_and_categorize(os.path.join(folder_path, file)) | |
if __name__ == "__main__": | |
if len(sys.argv) > 1: | |
input_path = sys.argv[1] | |
if os.path.isdir(input_path): | |
print(f"\nπ **Processing folder:** {input_path}\n") | |
process_folder(input_path) | |
elif os.path.isfile(input_path): | |
predict_and_categorize(input_path) | |
else: | |
print("β Invalid path. Please provide an image or folder.") | |
else: | |
print("β οΈ Please provide an image or folder path.") | |