Image-Categorise / predict.py
Mohi7's picture
Upload 18 files
c3d8a68 verified
import torch
import torchvision.transforms as transforms
from torchvision import models
from PIL import Image
import os
import shutil
import sys
# Load class names dynamically from dataset folder
dataset_path = "categorized_images"
class_names = sorted(os.listdir(dataset_path)) # Get categories from folder names
num_classes = len(class_names)
# Load trained model
model = models.mobilenet_v2(weights=models.MobileNet_V2_Weights.IMAGENET1K_V1)
model.classifier[1] = torch.nn.Linear(1280, num_classes)
model.load_state_dict(torch.load("custom_image_model.pth", map_location=torch.device('cpu')))
model.eval()
# Image transformation
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def predict_and_categorize(image_path, move=True):
"""Predict category for an image and move it to the correct folder."""
try:
image = Image.open(image_path).convert("RGB")
except Exception as e:
print(f"⚠️ Error loading image: {e}")
return
image_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
output = model(image_tensor)
probabilities = torch.nn.functional.softmax(output, dim=1)
predicted_index = torch.argmax(probabilities, dim=1).item()
predicted_category = class_names[predicted_index]
confidence = probabilities[0][predicted_index].item()
print(f"βœ… {image_path} -> **Predicted Category:** {predicted_category} ({confidence:.2%} confidence)")
# Move image to categorized_images folder
if move:
category_folder = os.path.join("categorized_images", predicted_category)
os.makedirs(category_folder, exist_ok=True)
shutil.move(image_path, os.path.join(category_folder, os.path.basename(image_path)))
print(f"πŸ“‚ Moved to: {category_folder}\n")
def process_folder(folder_path):
"""Process all images in a folder."""
if not os.path.exists(folder_path):
print(f"❌ Folder not found: {folder_path}")
return
for file in os.listdir(folder_path):
if file.lower().endswith((".png", ".jpg", ".jpeg")):
predict_and_categorize(os.path.join(folder_path, file))
if __name__ == "__main__":
if len(sys.argv) > 1:
input_path = sys.argv[1]
if os.path.isdir(input_path):
print(f"\nπŸ“‚ **Processing folder:** {input_path}\n")
process_folder(input_path)
elif os.path.isfile(input_path):
predict_and_categorize(input_path)
else:
print("❌ Invalid path. Please provide an image or folder.")
else:
print("⚠️ Please provide an image or folder path.")