Spaces:
Running
Running
import os | |
import torch | |
import torchvision.transforms as transforms | |
from torchvision import models | |
from PIL import Image | |
# Load class names dynamically | |
dataset_path = "categorized_images" | |
class_names = sorted(os.listdir(dataset_path)) # Get categories from folder names | |
num_classes = len(class_names) | |
# Load trained model | |
model = models.mobilenet_v2(weights=models.MobileNet_V2_Weights.IMAGENET1K_V1) | |
model.classifier[1] = torch.nn.Linear(1280, num_classes) | |
model.load_state_dict(torch.load("custom_image_model.pth", map_location=torch.device("cpu"))) | |
model.eval() | |
# Define image transformations | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
def predict_category(image_path): | |
"""Predicts the category of a single image.""" | |
image = Image.open(image_path).convert("RGB") | |
image = transform(image).unsqueeze(0) | |
with torch.no_grad(): | |
output = model(image) | |
probabilities = torch.nn.functional.softmax(output, dim=1) | |
predicted_index = torch.argmax(probabilities, dim=1).item() | |
return class_names[predicted_index] | |
def categorize_images(image_folder="uncategorized_images", output_folder="categorized_images"): | |
"""Categorizes all images in a folder.""" | |
if not os.path.exists(image_folder): | |
print("β Image folder not found!") | |
return | |
for img_name in os.listdir(image_folder): | |
img_path = os.path.join(image_folder, img_name) | |
if not os.path.isfile(img_path): | |
continue | |
category = predict_category(img_path) | |
category_folder = os.path.join(output_folder, category) | |
os.makedirs(category_folder, exist_ok=True) | |
new_path = os.path.join(category_folder, img_name) | |
os.rename(img_path, new_path) | |
print(f"β Moved {img_name} to {category}/") | |
if __name__ == "__main__": | |
categorize_images() | |
print("β Categorization complete!") | |