Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
9d8246c
1
Parent(s):
9508399
Refactoring
Browse files
app.py
CHANGED
@@ -8,73 +8,33 @@ import os.path as osp
|
|
8 |
import time
|
9 |
import hashlib
|
10 |
import argparse
|
|
|
|
|
11 |
import random
|
12 |
from pathlib import Path
|
13 |
-
from typing import List
|
14 |
-
|
15 |
|
16 |
import cv2
|
17 |
import numpy as np
|
18 |
import torch
|
19 |
import torch.nn.functional as F
|
20 |
from PIL import Image, ImageEnhance
|
|
|
21 |
from torchvision.transforms.functional import to_tensor
|
22 |
from transformers import AutoTokenizer, T5EncoderModel, T5TokenizerFast
|
23 |
from huggingface_hub import hf_hub_download
|
24 |
import gradio as gr
|
25 |
import spaces
|
26 |
-
import json
|
27 |
|
28 |
from models.infinity import Infinity
|
29 |
from models.basic import *
|
30 |
-
from utils.dynamic_resolution import dynamic_resolution_h_w
|
31 |
from gradio_client import Client
|
32 |
|
33 |
-
# Performance optimizations
|
34 |
torch._dynamo.config.cache_size_limit = 64
|
35 |
-
torch.backends.cudnn.benchmark = True # Enable cudnn auto-tuner
|
36 |
client = Client("Qwen/Qwen2.5-72B-Instruct")
|
37 |
|
38 |
-
@dataclass
|
39 |
-
class ModelConfig:
|
40 |
-
"""Configuration for Infinity model."""
|
41 |
-
depth: int
|
42 |
-
embed_dim: int
|
43 |
-
num_heads: int
|
44 |
-
drop_path_rate: float = 0.1
|
45 |
-
mlp_ratio: float = 4.0
|
46 |
-
block_chunks: int = 8
|
47 |
-
|
48 |
-
@classmethod
|
49 |
-
def from_type(cls, model_type: str) -> 'ModelConfig':
|
50 |
-
"""Create model config from predefined types."""
|
51 |
-
configs = {
|
52 |
-
'infinity_2b': dict(depth=32, embed_dim=2048, num_heads=2048//128),
|
53 |
-
'infinity_layer12': dict(depth=12, embed_dim=768, num_heads=8),
|
54 |
-
'infinity_layer16': dict(depth=16, embed_dim=1152, num_heads=12),
|
55 |
-
'infinity_layer24': dict(depth=24, embed_dim=1536, num_heads=16),
|
56 |
-
'infinity_layer32': dict(depth=32, embed_dim=2080, num_heads=20),
|
57 |
-
'infinity_layer40': dict(depth=40, embed_dim=2688, num_heads=24),
|
58 |
-
'infinity_layer48': dict(depth=48, embed_dim=3360, num_heads=28),
|
59 |
-
}
|
60 |
-
if model_type not in configs:
|
61 |
-
raise ValueError(f"Unknown model type: {model_type}")
|
62 |
-
return cls(**configs[model_type])
|
63 |
-
|
64 |
-
def to_dict(self) -> Dict:
|
65 |
-
"""Convert config to dictionary."""
|
66 |
-
return {
|
67 |
-
'depth': self.depth,
|
68 |
-
'embed_dim': self.embed_dim,
|
69 |
-
'num_heads': self.num_heads,
|
70 |
-
'drop_path_rate': self.drop_path_rate,
|
71 |
-
'mlp_ratio': self.mlp_ratio,
|
72 |
-
'block_chunks': self.block_chunks
|
73 |
-
}
|
74 |
-
|
75 |
-
# Global device configuration
|
76 |
-
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
77 |
-
|
78 |
# Define a function to download weights if not present
|
79 |
def download_infinity_weights(weights_path):
|
80 |
try:
|
@@ -89,19 +49,7 @@ def download_infinity_weights(weights_path):
|
|
89 |
except Exception as e:
|
90 |
print(f"Error downloading weights: {e}")
|
91 |
|
92 |
-
def
|
93 |
-
pattern = r'<(.+?):(.+?)>'
|
94 |
-
matches = re.findall(pattern, text)
|
95 |
-
key_val = {}
|
96 |
-
for match in matches:
|
97 |
-
key_val[match[0]] = match[1].lstrip()
|
98 |
-
return key_val
|
99 |
-
|
100 |
-
def encode_prompt(text_tokenizer, text_encoder, prompt, enable_positive_prompt=False):
|
101 |
-
if enable_positive_prompt:
|
102 |
-
print(f'before positive_prompt aug: {prompt}')
|
103 |
-
prompt = aug_with_positive_prompt(prompt)
|
104 |
-
print(f'after positive_prompt aug: {prompt}')
|
105 |
print(f'prompt={prompt}')
|
106 |
captions = [prompt]
|
107 |
tokens = text_tokenizer(text=captions, max_length=512, padding='max_length', truncation=True, return_tensors='pt') # todo: put this into dataset
|
@@ -118,14 +66,6 @@ def encode_prompt(text_tokenizer, text_encoder, prompt, enable_positive_prompt=F
|
|
118 |
text_cond_tuple = (kv_compact, lens, cu_seqlens_k, Ltext)
|
119 |
return text_cond_tuple
|
120 |
|
121 |
-
def aug_with_positive_prompt(prompt):
|
122 |
-
for key in ['man', 'woman', 'men', 'women', 'boy', 'girl', 'child', 'person', 'human', 'adult', 'teenager', 'employee',
|
123 |
-
'employer', 'worker', 'mother', 'father', 'sister', 'brother', 'grandmother', 'grandfather', 'son', 'daughter']:
|
124 |
-
if key in prompt:
|
125 |
-
prompt = prompt + '. very smooth faces, good looking faces, face to the camera, perfect facial features'
|
126 |
-
break
|
127 |
-
return prompt
|
128 |
-
|
129 |
def enhance_image(image):
|
130 |
for t in range(1):
|
131 |
contrast_image = image.copy()
|
@@ -136,6 +76,71 @@ def enhance_image(image):
|
|
136 |
color_image = color_enhancer.enhance(1.05) # 增强饱和度
|
137 |
return color_image
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
def get_prompt_id(prompt):
|
140 |
md5 = hashlib.md5()
|
141 |
md5.update(prompt.encode('utf-8'))
|
@@ -159,7 +164,7 @@ def load_tokenizer(t5_path =''):
|
|
159 |
text_tokenizer: T5TokenizerFast = AutoTokenizer.from_pretrained(t5_path, revision=None, legacy=True)
|
160 |
text_tokenizer.model_max_length = 512
|
161 |
text_encoder: T5EncoderModel = T5EncoderModel.from_pretrained(t5_path, torch_dtype=torch.float16)
|
162 |
-
text_encoder.to(
|
163 |
text_encoder.eval()
|
164 |
text_encoder.requires_grad_(False)
|
165 |
return text_tokenizer, text_encoder
|
@@ -174,6 +179,7 @@ def load_infinity(
|
|
174 |
model_path='',
|
175 |
scale_schedule=None,
|
176 |
vae=None,
|
|
|
177 |
model_kwargs=None,
|
178 |
text_channels=2048,
|
179 |
apply_spatial_patchify=0,
|
@@ -182,8 +188,13 @@ def load_infinity(
|
|
182 |
):
|
183 |
print(f'[Loading Infinity]')
|
184 |
|
|
|
|
|
|
|
|
|
|
|
185 |
# Set autocast dtype based on bf16 and device support
|
186 |
-
if bf16 and
|
187 |
autocast_dtype = torch.bfloat16
|
188 |
else:
|
189 |
autocast_dtype = torch.float32
|
@@ -192,7 +203,7 @@ def load_infinity(
|
|
192 |
text_maxlen = 512
|
193 |
torch.cuda.empty_cache()
|
194 |
|
195 |
-
with torch.amp.autocast(device_type=
|
196 |
infinity_test: Infinity = Infinity(
|
197 |
vae_local=vae, text_channels=text_channels, text_maxlen=text_maxlen,
|
198 |
shared_aln=True, raw_scale_schedule=scale_schedule,
|
@@ -210,7 +221,7 @@ def load_infinity(
|
|
210 |
inference_mode=True,
|
211 |
train_h_div_w_list=[1.0],
|
212 |
**model_kwargs,
|
213 |
-
).to(
|
214 |
|
215 |
print(f'[you selected Infinity with {model_kwargs=}] model size: {sum(p.numel() for p in infinity_test.parameters())/1e9:.2f}B, bf16={bf16}')
|
216 |
|
@@ -222,11 +233,11 @@ def load_infinity(
|
|
222 |
infinity_test.requires_grad_(False)
|
223 |
|
224 |
print(f'[Load Infinity weights]')
|
225 |
-
state_dict = torch.load(model_path, map_location=
|
226 |
print(infinity_test.load_state_dict(state_dict))
|
227 |
|
228 |
-
# Initialize random number generator
|
229 |
-
infinity_test.rng = torch.Generator(device=
|
230 |
|
231 |
return infinity_test
|
232 |
|
@@ -268,7 +279,7 @@ def joint_vi_vae_encode_decode(vae, image_path, scale_schedule, device, tgt_h, t
|
|
268 |
return gt_img, recons_img, all_bit_indices
|
269 |
|
270 |
def load_visual_tokenizer(args):
|
271 |
-
device =
|
272 |
# load vae
|
273 |
if args.vae_type in [16,18,20,24,32,64]:
|
274 |
from models.bsq_vae.vae import vae_model
|
@@ -311,7 +322,7 @@ def load_transformer(vae, args):
|
|
311 |
if not osp.exists(local_model_path):
|
312 |
print(f'copy {model_path} to {local_model_path}')
|
313 |
shutil.copyfile(model_path, local_model_path)
|
314 |
-
save_slim_model(local_model_path, save_file=local_slim_model_path, device=
|
315 |
print(f'copy {local_slim_model_path} to {slim_model_path}')
|
316 |
if not osp.exists(slim_model_path):
|
317 |
shutil.copyfile(local_slim_model_path, slim_model_path)
|
@@ -322,7 +333,20 @@ def load_transformer(vae, args):
|
|
322 |
slim_model_path = model_path
|
323 |
print(f'load checkpoint from {slim_model_path}')
|
324 |
|
325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
infinity = load_infinity(
|
327 |
rope2d_each_sa_layer=args.rope2d_each_sa_layer,
|
328 |
rope2d_normalized_by_hw=args.rope2d_normalized_by_hw,
|
@@ -333,7 +357,8 @@ def load_transformer(vae, args):
|
|
333 |
model_path=slim_model_path,
|
334 |
scale_schedule=None,
|
335 |
vae=vae,
|
336 |
-
|
|
|
337 |
text_channels=args.text_channels,
|
338 |
apply_spatial_patchify=args.apply_spatial_patchify,
|
339 |
use_flex_attn=args.use_flex_attn,
|
@@ -400,6 +425,10 @@ weights_path = Path(__file__).parent / 'weights'
|
|
400 |
weights_path.mkdir(exist_ok=True)
|
401 |
download_infinity_weights(weights_path)
|
402 |
|
|
|
|
|
|
|
|
|
403 |
# Define args
|
404 |
args = argparse.Namespace(
|
405 |
pn='1M',
|
@@ -421,7 +450,7 @@ args = argparse.Namespace(
|
|
421 |
cache_dir='/dev/shm',
|
422 |
checkpoint_type='torch',
|
423 |
seed=0,
|
424 |
-
bf16=1 if
|
425 |
save_file='tmp.jpg',
|
426 |
enable_model_cache=False,
|
427 |
)
|
@@ -433,62 +462,43 @@ infinity = load_transformer(vae, args)
|
|
433 |
|
434 |
# Define the image generation function
|
435 |
@spaces.GPU
|
436 |
-
def generate_image(prompt, cfg, tau, h_div_w, seed
|
437 |
-
"""Generate an image from a prompt with integrated generation logic."""
|
438 |
try:
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
# Calculate image dimensions
|
446 |
-
tgt_h, tgt_w = dynamic_resolution_h_w(h_div_w)
|
447 |
-
scale_schedule = None
|
448 |
|
449 |
-
#
|
450 |
-
|
451 |
-
|
452 |
-
# Set up negative prompt if needed
|
453 |
-
negative_prompt = ''
|
454 |
-
if negative_prompt:
|
455 |
-
negative_cond_tuple = encode_prompt(text_tokenizer, text_encoder, negative_prompt)
|
456 |
-
negative_label_B_or_BLT = negative_cond_tuple[0]
|
457 |
-
else:
|
458 |
-
negative_label_B_or_BLT = None
|
459 |
|
460 |
-
|
|
|
|
|
461 |
|
462 |
-
# Generate image
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
gt_leak=0,
|
480 |
-
gt_ls_Bl=None,
|
481 |
-
g_seed=seed,
|
482 |
-
sampling_per_bits=args.sampling_per_bits,
|
483 |
-
scale_schedule=scale_schedule,
|
484 |
-
)
|
485 |
-
print(f'inference time: {time.time()-stt:.3f}s')
|
486 |
|
487 |
-
# Convert the image
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
image = np.uint8(image)
|
492 |
|
493 |
return image
|
494 |
except Exception as e:
|
@@ -498,11 +508,6 @@ def generate_image(prompt, cfg, tau, h_div_w, seed, enable_positive_prompt=False
|
|
498 |
# Set up Gradio interface
|
499 |
with gr.Blocks() as demo:
|
500 |
gr.Markdown("<h1><center>Infinity Image Generator</center></h1>")
|
501 |
-
gr.Markdown("### Instructions")
|
502 |
-
gr.Markdown("1. Enter a prompt in the **Prompt Settings** section.")
|
503 |
-
gr.Markdown("2. Click the **Enhance Prompt** button to generate a more creative and detailed prompt.")
|
504 |
-
gr.Markdown("3. Adjust the **Image Settings** as desired.")
|
505 |
-
gr.Markdown("4. Click the **Generate Image** button to generate the image on the right.")
|
506 |
|
507 |
with gr.Row():
|
508 |
with gr.Column():
|
|
|
8 |
import time
|
9 |
import hashlib
|
10 |
import argparse
|
11 |
+
import shutil
|
12 |
+
import re
|
13 |
import random
|
14 |
from pathlib import Path
|
15 |
+
from typing import List
|
16 |
+
import json
|
17 |
|
18 |
import cv2
|
19 |
import numpy as np
|
20 |
import torch
|
21 |
import torch.nn.functional as F
|
22 |
from PIL import Image, ImageEnhance
|
23 |
+
import PIL.Image as PImage
|
24 |
from torchvision.transforms.functional import to_tensor
|
25 |
from transformers import AutoTokenizer, T5EncoderModel, T5TokenizerFast
|
26 |
from huggingface_hub import hf_hub_download
|
27 |
import gradio as gr
|
28 |
import spaces
|
|
|
29 |
|
30 |
from models.infinity import Infinity
|
31 |
from models.basic import *
|
32 |
+
from utils.dynamic_resolution import dynamic_resolution_h_w, h_div_w_templates
|
33 |
from gradio_client import Client
|
34 |
|
|
|
35 |
torch._dynamo.config.cache_size_limit = 64
|
|
|
36 |
client = Client("Qwen/Qwen2.5-72B-Instruct")
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# Define a function to download weights if not present
|
39 |
def download_infinity_weights(weights_path):
|
40 |
try:
|
|
|
49 |
except Exception as e:
|
50 |
print(f"Error downloading weights: {e}")
|
51 |
|
52 |
+
def encode_prompt(text_tokenizer, text_encoder, prompt):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
print(f'prompt={prompt}')
|
54 |
captions = [prompt]
|
55 |
tokens = text_tokenizer(text=captions, max_length=512, padding='max_length', truncation=True, return_tensors='pt') # todo: put this into dataset
|
|
|
66 |
text_cond_tuple = (kv_compact, lens, cu_seqlens_k, Ltext)
|
67 |
return text_cond_tuple
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
def enhance_image(image):
|
70 |
for t in range(1):
|
71 |
contrast_image = image.copy()
|
|
|
76 |
color_image = color_enhancer.enhance(1.05) # 增强饱和度
|
77 |
return color_image
|
78 |
|
79 |
+
def gen_one_img(
|
80 |
+
infinity_test,
|
81 |
+
vae,
|
82 |
+
text_tokenizer,
|
83 |
+
text_encoder,
|
84 |
+
prompt,
|
85 |
+
cfg_list=[],
|
86 |
+
tau_list=[],
|
87 |
+
negative_prompt='',
|
88 |
+
scale_schedule=None,
|
89 |
+
top_k=900,
|
90 |
+
top_p=0.97,
|
91 |
+
cfg_sc=3,
|
92 |
+
cfg_exp_k=0.0,
|
93 |
+
cfg_insertion_layer=-5,
|
94 |
+
vae_type=0,
|
95 |
+
gumbel=0,
|
96 |
+
softmax_merge_topk=-1,
|
97 |
+
gt_leak=-1,
|
98 |
+
gt_ls_Bl=None,
|
99 |
+
g_seed=None,
|
100 |
+
sampling_per_bits=1,
|
101 |
+
):
|
102 |
+
sstt = time.time()
|
103 |
+
if not isinstance(cfg_list, list):
|
104 |
+
cfg_list = [cfg_list] * len(scale_schedule)
|
105 |
+
if not isinstance(tau_list, list):
|
106 |
+
tau_list = [tau_list] * len(scale_schedule)
|
107 |
+
text_cond_tuple = encode_prompt(text_tokenizer, text_encoder, prompt)
|
108 |
+
if negative_prompt:
|
109 |
+
negative_label_B_or_BLT = encode_prompt(text_tokenizer, text_encoder, negative_prompt)
|
110 |
+
else:
|
111 |
+
negative_label_B_or_BLT = None
|
112 |
+
print(f'cfg: {cfg_list}, tau: {tau_list}')
|
113 |
+
|
114 |
+
# Set device if not provided
|
115 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
116 |
+
|
117 |
+
# Set autocast dtype based on bf16 and device support
|
118 |
+
if device == 'cuda' and torch.cuda.is_bf16_supported():
|
119 |
+
autocast_dtype = torch.bfloat16
|
120 |
+
else:
|
121 |
+
autocast_dtype = torch.float32
|
122 |
+
|
123 |
+
torch.cuda.empty_cache()
|
124 |
+
|
125 |
+
with torch.amp.autocast(device_type=device, dtype=autocast_dtype), torch.no_grad():
|
126 |
+
stt = time.time()
|
127 |
+
_, _, img_list = infinity_test.autoregressive_infer_cfg(
|
128 |
+
vae=vae,
|
129 |
+
scale_schedule=scale_schedule,
|
130 |
+
label_B_or_BLT=text_cond_tuple, g_seed=g_seed,
|
131 |
+
B=1, negative_label_B_or_BLT=negative_label_B_or_BLT, force_gt_Bhw=None,
|
132 |
+
cfg_sc=cfg_sc, cfg_list=cfg_list, tau_list=tau_list, top_k=top_k, top_p=top_p,
|
133 |
+
returns_vemb=1, ratio_Bl1=None, gumbel=gumbel, norm_cfg=False,
|
134 |
+
cfg_exp_k=cfg_exp_k, cfg_insertion_layer=cfg_insertion_layer,
|
135 |
+
vae_type=vae_type, softmax_merge_topk=softmax_merge_topk,
|
136 |
+
ret_img=True, trunk_scale=1000,
|
137 |
+
gt_leak=gt_leak, gt_ls_Bl=gt_ls_Bl, inference_mode=True,
|
138 |
+
sampling_per_bits=sampling_per_bits,
|
139 |
+
)
|
140 |
+
print(f"cost: {time.time() - sstt}, infinity cost={time.time() - stt}")
|
141 |
+
img = img_list[0]
|
142 |
+
return img
|
143 |
+
|
144 |
def get_prompt_id(prompt):
|
145 |
md5 = hashlib.md5()
|
146 |
md5.update(prompt.encode('utf-8'))
|
|
|
164 |
text_tokenizer: T5TokenizerFast = AutoTokenizer.from_pretrained(t5_path, revision=None, legacy=True)
|
165 |
text_tokenizer.model_max_length = 512
|
166 |
text_encoder: T5EncoderModel = T5EncoderModel.from_pretrained(t5_path, torch_dtype=torch.float16)
|
167 |
+
text_encoder.to('cuda')
|
168 |
text_encoder.eval()
|
169 |
text_encoder.requires_grad_(False)
|
170 |
return text_tokenizer, text_encoder
|
|
|
179 |
model_path='',
|
180 |
scale_schedule=None,
|
181 |
vae=None,
|
182 |
+
device=None, # Make device optional
|
183 |
model_kwargs=None,
|
184 |
text_channels=2048,
|
185 |
apply_spatial_patchify=0,
|
|
|
188 |
):
|
189 |
print(f'[Loading Infinity]')
|
190 |
|
191 |
+
# Set device if not provided
|
192 |
+
if device is None:
|
193 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
194 |
+
print(f'Using device: {device}')
|
195 |
+
|
196 |
# Set autocast dtype based on bf16 and device support
|
197 |
+
if bf16 and device == 'cuda' and torch.cuda.is_bf16_supported():
|
198 |
autocast_dtype = torch.bfloat16
|
199 |
else:
|
200 |
autocast_dtype = torch.float32
|
|
|
203 |
text_maxlen = 512
|
204 |
torch.cuda.empty_cache()
|
205 |
|
206 |
+
with torch.amp.autocast(device_type=device, dtype=autocast_dtype), torch.no_grad():
|
207 |
infinity_test: Infinity = Infinity(
|
208 |
vae_local=vae, text_channels=text_channels, text_maxlen=text_maxlen,
|
209 |
shared_aln=True, raw_scale_schedule=scale_schedule,
|
|
|
221 |
inference_mode=True,
|
222 |
train_h_div_w_list=[1.0],
|
223 |
**model_kwargs,
|
224 |
+
).to(device)
|
225 |
|
226 |
print(f'[you selected Infinity with {model_kwargs=}] model size: {sum(p.numel() for p in infinity_test.parameters())/1e9:.2f}B, bf16={bf16}')
|
227 |
|
|
|
233 |
infinity_test.requires_grad_(False)
|
234 |
|
235 |
print(f'[Load Infinity weights]')
|
236 |
+
state_dict = torch.load(model_path, map_location=device)
|
237 |
print(infinity_test.load_state_dict(state_dict))
|
238 |
|
239 |
+
# Initialize random number generator on the correct device
|
240 |
+
infinity_test.rng = torch.Generator(device=device)
|
241 |
|
242 |
return infinity_test
|
243 |
|
|
|
279 |
return gt_img, recons_img, all_bit_indices
|
280 |
|
281 |
def load_visual_tokenizer(args):
|
282 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
283 |
# load vae
|
284 |
if args.vae_type in [16,18,20,24,32,64]:
|
285 |
from models.bsq_vae.vae import vae_model
|
|
|
322 |
if not osp.exists(local_model_path):
|
323 |
print(f'copy {model_path} to {local_model_path}')
|
324 |
shutil.copyfile(model_path, local_model_path)
|
325 |
+
save_slim_model(local_model_path, save_file=local_slim_model_path, device=device)
|
326 |
print(f'copy {local_slim_model_path} to {slim_model_path}')
|
327 |
if not osp.exists(slim_model_path):
|
328 |
shutil.copyfile(local_slim_model_path, slim_model_path)
|
|
|
333 |
slim_model_path = model_path
|
334 |
print(f'load checkpoint from {slim_model_path}')
|
335 |
|
336 |
+
if args.model_type == 'infinity_2b':
|
337 |
+
kwargs_model = dict(depth=32, embed_dim=2048, num_heads=2048//128, drop_path_rate=0.1, mlp_ratio=4, block_chunks=8) # 2b model
|
338 |
+
elif args.model_type == 'infinity_layer12':
|
339 |
+
kwargs_model = dict(depth=12, embed_dim=768, num_heads=8, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
|
340 |
+
elif args.model_type == 'infinity_layer16':
|
341 |
+
kwargs_model = dict(depth=16, embed_dim=1152, num_heads=12, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
|
342 |
+
elif args.model_type == 'infinity_layer24':
|
343 |
+
kwargs_model = dict(depth=24, embed_dim=1536, num_heads=16, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
|
344 |
+
elif args.model_type == 'infinity_layer32':
|
345 |
+
kwargs_model = dict(depth=32, embed_dim=2080, num_heads=20, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
|
346 |
+
elif args.model_type == 'infinity_layer40':
|
347 |
+
kwargs_model = dict(depth=40, embed_dim=2688, num_heads=24, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
|
348 |
+
elif args.model_type == 'infinity_layer48':
|
349 |
+
kwargs_model = dict(depth=48, embed_dim=3360, num_heads=28, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
|
350 |
infinity = load_infinity(
|
351 |
rope2d_each_sa_layer=args.rope2d_each_sa_layer,
|
352 |
rope2d_normalized_by_hw=args.rope2d_normalized_by_hw,
|
|
|
357 |
model_path=slim_model_path,
|
358 |
scale_schedule=None,
|
359 |
vae=vae,
|
360 |
+
device=None,
|
361 |
+
model_kwargs=kwargs_model,
|
362 |
text_channels=args.text_channels,
|
363 |
apply_spatial_patchify=args.apply_spatial_patchify,
|
364 |
use_flex_attn=args.use_flex_attn,
|
|
|
425 |
weights_path.mkdir(exist_ok=True)
|
426 |
download_infinity_weights(weights_path)
|
427 |
|
428 |
+
# Device setup
|
429 |
+
dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float32
|
430 |
+
print(f"Using dtype: {dtype}")
|
431 |
+
|
432 |
# Define args
|
433 |
args = argparse.Namespace(
|
434 |
pn='1M',
|
|
|
450 |
cache_dir='/dev/shm',
|
451 |
checkpoint_type='torch',
|
452 |
seed=0,
|
453 |
+
bf16=1 if dtype == torch.bfloat16 else 0,
|
454 |
save_file='tmp.jpg',
|
455 |
enable_model_cache=False,
|
456 |
)
|
|
|
462 |
|
463 |
# Define the image generation function
|
464 |
@spaces.GPU
|
465 |
+
def generate_image(prompt, cfg, tau, h_div_w, seed):
|
|
|
466 |
try:
|
467 |
+
args.prompt = prompt
|
468 |
+
args.cfg = cfg
|
469 |
+
args.tau = tau
|
470 |
+
args.h_div_w = h_div_w
|
471 |
+
args.seed = seed
|
|
|
|
|
|
|
|
|
472 |
|
473 |
+
# Find the closest h_div_w_template
|
474 |
+
h_div_w_template_ = h_div_w_templates[np.argmin(np.abs(h_div_w_templates - h_div_w))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
|
476 |
+
# Get scale_schedule based on h_div_w_template_
|
477 |
+
scale_schedule = dynamic_resolution_h_w[h_div_w_template_][args.pn]['scales']
|
478 |
+
scale_schedule = [(1, h, w) for (_, h, w) in scale_schedule]
|
479 |
|
480 |
+
# Generate the image
|
481 |
+
generated_image = gen_one_img(
|
482 |
+
infinity,
|
483 |
+
vae,
|
484 |
+
text_tokenizer,
|
485 |
+
text_encoder,
|
486 |
+
prompt,
|
487 |
+
g_seed=seed,
|
488 |
+
gt_leak=0,
|
489 |
+
gt_ls_Bl=None,
|
490 |
+
cfg_list=cfg,
|
491 |
+
tau_list=tau,
|
492 |
+
scale_schedule=scale_schedule,
|
493 |
+
cfg_insertion_layer=[args.cfg_insertion_layer],
|
494 |
+
vae_type=args.vae_type,
|
495 |
+
sampling_per_bits=args.sampling_per_bits,
|
496 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
497 |
|
498 |
+
# Convert the image to RGB and uint8
|
499 |
+
image = generated_image.cpu().numpy()
|
500 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
501 |
+
image = np.uint8(image)
|
|
|
502 |
|
503 |
return image
|
504 |
except Exception as e:
|
|
|
508 |
# Set up Gradio interface
|
509 |
with gr.Blocks() as demo:
|
510 |
gr.Markdown("<h1><center>Infinity Image Generator</center></h1>")
|
|
|
|
|
|
|
|
|
|
|
511 |
|
512 |
with gr.Row():
|
513 |
with gr.Column():
|