Spaces:
Paused
Paused
Commit
·
0e3e704
1
Parent(s):
1776f2c
Refactoring
Browse files
app.py
CHANGED
|
@@ -8,19 +8,16 @@ import os.path as osp
|
|
| 8 |
import time
|
| 9 |
import hashlib
|
| 10 |
import argparse
|
| 11 |
-
import shutil
|
| 12 |
-
import re
|
| 13 |
import random
|
| 14 |
from pathlib import Path
|
| 15 |
-
from typing import List
|
| 16 |
-
import
|
| 17 |
|
| 18 |
import cv2
|
| 19 |
import numpy as np
|
| 20 |
import torch
|
| 21 |
import torch.nn.functional as F
|
| 22 |
from PIL import Image, ImageEnhance
|
| 23 |
-
import PIL.Image as PImage
|
| 24 |
from torchvision.transforms.functional import to_tensor
|
| 25 |
from transformers import AutoTokenizer, T5EncoderModel, T5TokenizerFast
|
| 26 |
from huggingface_hub import hf_hub_download
|
|
@@ -29,12 +26,54 @@ import spaces
|
|
| 29 |
|
| 30 |
from models.infinity import Infinity
|
| 31 |
from models.basic import *
|
| 32 |
-
from utils.dynamic_resolution import dynamic_resolution_h_w
|
| 33 |
from gradio_client import Client
|
| 34 |
|
|
|
|
| 35 |
torch._dynamo.config.cache_size_limit = 64
|
|
|
|
| 36 |
client = Client("Qwen/Qwen2.5-72B-Instruct")
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
# Define a function to download weights if not present
|
| 39 |
def download_infinity_weights(weights_path):
|
| 40 |
try:
|
|
@@ -96,60 +135,6 @@ def enhance_image(image):
|
|
| 96 |
color_image = color_enhancer.enhance(1.05) # 增强饱和度
|
| 97 |
return color_image
|
| 98 |
|
| 99 |
-
def gen_one_img(
|
| 100 |
-
infinity_test,
|
| 101 |
-
vae,
|
| 102 |
-
text_tokenizer,
|
| 103 |
-
text_encoder,
|
| 104 |
-
prompt,
|
| 105 |
-
cfg_list=[],
|
| 106 |
-
tau_list=[],
|
| 107 |
-
negative_prompt='',
|
| 108 |
-
scale_schedule=None,
|
| 109 |
-
top_k=900,
|
| 110 |
-
top_p=0.97,
|
| 111 |
-
cfg_sc=3,
|
| 112 |
-
cfg_exp_k=0.0,
|
| 113 |
-
cfg_insertion_layer=-5,
|
| 114 |
-
vae_type=0,
|
| 115 |
-
gumbel=0,
|
| 116 |
-
softmax_merge_topk=-1,
|
| 117 |
-
gt_leak=-1,
|
| 118 |
-
gt_ls_Bl=None,
|
| 119 |
-
g_seed=None,
|
| 120 |
-
sampling_per_bits=1,
|
| 121 |
-
enable_positive_prompt=0,
|
| 122 |
-
):
|
| 123 |
-
sstt = time.time()
|
| 124 |
-
if not isinstance(cfg_list, list):
|
| 125 |
-
cfg_list = [cfg_list] * len(scale_schedule)
|
| 126 |
-
if not isinstance(tau_list, list):
|
| 127 |
-
tau_list = [tau_list] * len(scale_schedule)
|
| 128 |
-
text_cond_tuple = encode_prompt(text_tokenizer, text_encoder, prompt, enable_positive_prompt)
|
| 129 |
-
if negative_prompt:
|
| 130 |
-
negative_label_B_or_BLT = encode_prompt(text_tokenizer, text_encoder, negative_prompt)
|
| 131 |
-
else:
|
| 132 |
-
negative_label_B_or_BLT = None
|
| 133 |
-
print(f'cfg: {cfg_list}, tau: {tau_list}')
|
| 134 |
-
with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16, cache_enabled=True):
|
| 135 |
-
stt = time.time()
|
| 136 |
-
_, _, img_list = infinity_test.autoregressive_infer_cfg(
|
| 137 |
-
vae=vae,
|
| 138 |
-
scale_schedule=scale_schedule,
|
| 139 |
-
label_B_or_BLT=text_cond_tuple, g_seed=g_seed,
|
| 140 |
-
B=1, negative_label_B_or_BLT=negative_label_B_or_BLT, force_gt_Bhw=None,
|
| 141 |
-
cfg_sc=cfg_sc, cfg_list=cfg_list, tau_list=tau_list, top_k=top_k, top_p=top_p,
|
| 142 |
-
returns_vemb=1, ratio_Bl1=None, gumbel=gumbel, norm_cfg=False,
|
| 143 |
-
cfg_exp_k=cfg_exp_k, cfg_insertion_layer=cfg_insertion_layer,
|
| 144 |
-
vae_type=vae_type, softmax_merge_topk=softmax_merge_topk,
|
| 145 |
-
ret_img=True, trunk_scale=1000,
|
| 146 |
-
gt_leak=gt_leak, gt_ls_Bl=gt_ls_Bl, inference_mode=True,
|
| 147 |
-
sampling_per_bits=sampling_per_bits,
|
| 148 |
-
)
|
| 149 |
-
print(f"cost: {time.time() - sstt}, infinity cost={time.time() - stt}")
|
| 150 |
-
img = img_list[0]
|
| 151 |
-
return img
|
| 152 |
-
|
| 153 |
def get_prompt_id(prompt):
|
| 154 |
md5 = hashlib.md5()
|
| 155 |
md5.update(prompt.encode('utf-8'))
|
|
@@ -173,7 +158,7 @@ def load_tokenizer(t5_path =''):
|
|
| 173 |
text_tokenizer: T5TokenizerFast = AutoTokenizer.from_pretrained(t5_path, revision=None, legacy=True)
|
| 174 |
text_tokenizer.model_max_length = 512
|
| 175 |
text_encoder: T5EncoderModel = T5EncoderModel.from_pretrained(t5_path, torch_dtype=torch.float16)
|
| 176 |
-
text_encoder.to(
|
| 177 |
text_encoder.eval()
|
| 178 |
text_encoder.requires_grad_(False)
|
| 179 |
return text_tokenizer, text_encoder
|
|
@@ -188,7 +173,6 @@ def load_infinity(
|
|
| 188 |
model_path='',
|
| 189 |
scale_schedule=None,
|
| 190 |
vae=None,
|
| 191 |
-
device=None, # Make device optional
|
| 192 |
model_kwargs=None,
|
| 193 |
text_channels=2048,
|
| 194 |
apply_spatial_patchify=0,
|
|
@@ -197,13 +181,8 @@ def load_infinity(
|
|
| 197 |
):
|
| 198 |
print(f'[Loading Infinity]')
|
| 199 |
|
| 200 |
-
# Set device if not provided
|
| 201 |
-
if device is None:
|
| 202 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 203 |
-
print(f'Using device: {device}')
|
| 204 |
-
|
| 205 |
# Set autocast dtype based on bf16 and device support
|
| 206 |
-
if bf16 and
|
| 207 |
autocast_dtype = torch.bfloat16
|
| 208 |
else:
|
| 209 |
autocast_dtype = torch.float32
|
|
@@ -212,7 +191,7 @@ def load_infinity(
|
|
| 212 |
text_maxlen = 512
|
| 213 |
torch.cuda.empty_cache()
|
| 214 |
|
| 215 |
-
with torch.amp.autocast(device_type=
|
| 216 |
infinity_test: Infinity = Infinity(
|
| 217 |
vae_local=vae, text_channels=text_channels, text_maxlen=text_maxlen,
|
| 218 |
shared_aln=True, raw_scale_schedule=scale_schedule,
|
|
@@ -230,7 +209,7 @@ def load_infinity(
|
|
| 230 |
inference_mode=True,
|
| 231 |
train_h_div_w_list=[1.0],
|
| 232 |
**model_kwargs,
|
| 233 |
-
).to(
|
| 234 |
|
| 235 |
print(f'[you selected Infinity with {model_kwargs=}] model size: {sum(p.numel() for p in infinity_test.parameters())/1e9:.2f}B, bf16={bf16}')
|
| 236 |
|
|
@@ -242,17 +221,11 @@ def load_infinity(
|
|
| 242 |
infinity_test.requires_grad_(False)
|
| 243 |
|
| 244 |
print(f'[Load Infinity weights]')
|
| 245 |
-
state_dict = torch.load(model_path, map_location=
|
| 246 |
print(infinity_test.load_state_dict(state_dict))
|
| 247 |
|
| 248 |
-
# Initialize random number generator
|
| 249 |
-
|
| 250 |
-
infinity_test.rng = torch.Generator(device=device)
|
| 251 |
-
except RuntimeError:
|
| 252 |
-
print("CUDA device not available. Falling back to CPU...")
|
| 253 |
-
device = 'cpu'
|
| 254 |
-
infinity_test = infinity_test.to(device)
|
| 255 |
-
infinity_test.rng = torch.Generator(device=device)
|
| 256 |
|
| 257 |
return infinity_test
|
| 258 |
|
|
@@ -294,7 +267,7 @@ def joint_vi_vae_encode_decode(vae, image_path, scale_schedule, device, tgt_h, t
|
|
| 294 |
return gt_img, recons_img, all_bit_indices
|
| 295 |
|
| 296 |
def load_visual_tokenizer(args):
|
| 297 |
-
device =
|
| 298 |
# load vae
|
| 299 |
if args.vae_type in [16,18,20,24,32,64]:
|
| 300 |
from models.bsq_vae.vae import vae_model
|
|
@@ -337,7 +310,7 @@ def load_transformer(vae, args):
|
|
| 337 |
if not osp.exists(local_model_path):
|
| 338 |
print(f'copy {model_path} to {local_model_path}')
|
| 339 |
shutil.copyfile(model_path, local_model_path)
|
| 340 |
-
save_slim_model(local_model_path, save_file=local_slim_model_path, device=
|
| 341 |
print(f'copy {local_slim_model_path} to {slim_model_path}')
|
| 342 |
if not osp.exists(slim_model_path):
|
| 343 |
shutil.copyfile(local_slim_model_path, slim_model_path)
|
|
@@ -348,20 +321,7 @@ def load_transformer(vae, args):
|
|
| 348 |
slim_model_path = model_path
|
| 349 |
print(f'load checkpoint from {slim_model_path}')
|
| 350 |
|
| 351 |
-
|
| 352 |
-
kwargs_model = dict(depth=32, embed_dim=2048, num_heads=2048//128, drop_path_rate=0.1, mlp_ratio=4, block_chunks=8) # 2b model
|
| 353 |
-
elif args.model_type == 'infinity_layer12':
|
| 354 |
-
kwargs_model = dict(depth=12, embed_dim=768, num_heads=8, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
|
| 355 |
-
elif args.model_type == 'infinity_layer16':
|
| 356 |
-
kwargs_model = dict(depth=16, embed_dim=1152, num_heads=12, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
|
| 357 |
-
elif args.model_type == 'infinity_layer24':
|
| 358 |
-
kwargs_model = dict(depth=24, embed_dim=1536, num_heads=16, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
|
| 359 |
-
elif args.model_type == 'infinity_layer32':
|
| 360 |
-
kwargs_model = dict(depth=32, embed_dim=2080, num_heads=20, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
|
| 361 |
-
elif args.model_type == 'infinity_layer40':
|
| 362 |
-
kwargs_model = dict(depth=40, embed_dim=2688, num_heads=24, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
|
| 363 |
-
elif args.model_type == 'infinity_layer48':
|
| 364 |
-
kwargs_model = dict(depth=48, embed_dim=3360, num_heads=28, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
|
| 365 |
infinity = load_infinity(
|
| 366 |
rope2d_each_sa_layer=args.rope2d_each_sa_layer,
|
| 367 |
rope2d_normalized_by_hw=args.rope2d_normalized_by_hw,
|
|
@@ -372,8 +332,7 @@ def load_transformer(vae, args):
|
|
| 372 |
model_path=slim_model_path,
|
| 373 |
scale_schedule=None,
|
| 374 |
vae=vae,
|
| 375 |
-
|
| 376 |
-
model_kwargs=kwargs_model,
|
| 377 |
text_channels=args.text_channels,
|
| 378 |
apply_spatial_patchify=args.apply_spatial_patchify,
|
| 379 |
use_flex_attn=args.use_flex_attn,
|
|
@@ -440,10 +399,6 @@ weights_path = Path(__file__).parent / 'weights'
|
|
| 440 |
weights_path.mkdir(exist_ok=True)
|
| 441 |
download_infinity_weights(weights_path)
|
| 442 |
|
| 443 |
-
# Device setup
|
| 444 |
-
dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float32
|
| 445 |
-
print(f"Using dtype: {dtype}")
|
| 446 |
-
|
| 447 |
# Define args
|
| 448 |
args = argparse.Namespace(
|
| 449 |
pn='1M',
|
|
@@ -465,7 +420,7 @@ args = argparse.Namespace(
|
|
| 465 |
cache_dir='/dev/shm',
|
| 466 |
checkpoint_type='torch',
|
| 467 |
seed=0,
|
| 468 |
-
bf16=1 if
|
| 469 |
save_file='tmp.jpg',
|
| 470 |
enable_model_cache=False,
|
| 471 |
)
|
|
@@ -478,44 +433,61 @@ infinity = load_transformer(vae, args)
|
|
| 478 |
# Define the image generation function
|
| 479 |
@spaces.GPU
|
| 480 |
def generate_image(prompt, cfg, tau, h_div_w, seed, enable_positive_prompt=False):
|
|
|
|
| 481 |
try:
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
|
|
|
|
|
|
|
|
|
| 488 |
|
| 489 |
-
#
|
| 490 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 491 |
|
| 492 |
-
|
| 493 |
-
scale_schedule = dynamic_resolution_h_w[h_div_w_template_][args.pn]['scales']
|
| 494 |
-
scale_schedule = [(1, h, w) for (_, h, w) in scale_schedule]
|
| 495 |
|
| 496 |
-
# Generate
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 514 |
|
| 515 |
-
# Convert the image
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
|
|
|
| 519 |
|
| 520 |
return image
|
| 521 |
except Exception as e:
|
|
@@ -525,6 +497,11 @@ def generate_image(prompt, cfg, tau, h_div_w, seed, enable_positive_prompt=False
|
|
| 525 |
# Set up Gradio interface
|
| 526 |
with gr.Blocks() as demo:
|
| 527 |
gr.Markdown("<h1><center>Infinity Image Generator</center></h1>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 528 |
|
| 529 |
with gr.Row():
|
| 530 |
with gr.Column():
|
|
|
|
| 8 |
import time
|
| 9 |
import hashlib
|
| 10 |
import argparse
|
|
|
|
|
|
|
| 11 |
import random
|
| 12 |
from pathlib import Path
|
| 13 |
+
from typing import List, Dict, Optional
|
| 14 |
+
from dataclasses import dataclass
|
| 15 |
|
| 16 |
import cv2
|
| 17 |
import numpy as np
|
| 18 |
import torch
|
| 19 |
import torch.nn.functional as F
|
| 20 |
from PIL import Image, ImageEnhance
|
|
|
|
| 21 |
from torchvision.transforms.functional import to_tensor
|
| 22 |
from transformers import AutoTokenizer, T5EncoderModel, T5TokenizerFast
|
| 23 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 26 |
|
| 27 |
from models.infinity import Infinity
|
| 28 |
from models.basic import *
|
| 29 |
+
from utils.dynamic_resolution import dynamic_resolution_h_w
|
| 30 |
from gradio_client import Client
|
| 31 |
|
| 32 |
+
# Performance optimizations
|
| 33 |
torch._dynamo.config.cache_size_limit = 64
|
| 34 |
+
torch.backends.cudnn.benchmark = True # Enable cudnn auto-tuner
|
| 35 |
client = Client("Qwen/Qwen2.5-72B-Instruct")
|
| 36 |
|
| 37 |
+
@dataclass
|
| 38 |
+
class ModelConfig:
|
| 39 |
+
"""Configuration for Infinity model."""
|
| 40 |
+
depth: int
|
| 41 |
+
embed_dim: int
|
| 42 |
+
num_heads: int
|
| 43 |
+
drop_path_rate: float = 0.1
|
| 44 |
+
mlp_ratio: float = 4.0
|
| 45 |
+
block_chunks: int = 8
|
| 46 |
+
|
| 47 |
+
@classmethod
|
| 48 |
+
def from_type(cls, model_type: str) -> 'ModelConfig':
|
| 49 |
+
"""Create model config from predefined types."""
|
| 50 |
+
configs = {
|
| 51 |
+
'infinity_2b': dict(depth=32, embed_dim=2048, num_heads=2048//128),
|
| 52 |
+
'infinity_layer12': dict(depth=12, embed_dim=768, num_heads=8),
|
| 53 |
+
'infinity_layer16': dict(depth=16, embed_dim=1152, num_heads=12),
|
| 54 |
+
'infinity_layer24': dict(depth=24, embed_dim=1536, num_heads=16),
|
| 55 |
+
'infinity_layer32': dict(depth=32, embed_dim=2080, num_heads=20),
|
| 56 |
+
'infinity_layer40': dict(depth=40, embed_dim=2688, num_heads=24),
|
| 57 |
+
'infinity_layer48': dict(depth=48, embed_dim=3360, num_heads=28),
|
| 58 |
+
}
|
| 59 |
+
if model_type not in configs:
|
| 60 |
+
raise ValueError(f"Unknown model type: {model_type}")
|
| 61 |
+
return cls(**configs[model_type])
|
| 62 |
+
|
| 63 |
+
def to_dict(self) -> Dict:
|
| 64 |
+
"""Convert config to dictionary."""
|
| 65 |
+
return {
|
| 66 |
+
'depth': self.depth,
|
| 67 |
+
'embed_dim': self.embed_dim,
|
| 68 |
+
'num_heads': self.num_heads,
|
| 69 |
+
'drop_path_rate': self.drop_path_rate,
|
| 70 |
+
'mlp_ratio': self.mlp_ratio,
|
| 71 |
+
'block_chunks': self.block_chunks
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
# Global device configuration
|
| 75 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 76 |
+
|
| 77 |
# Define a function to download weights if not present
|
| 78 |
def download_infinity_weights(weights_path):
|
| 79 |
try:
|
|
|
|
| 135 |
color_image = color_enhancer.enhance(1.05) # 增强饱和度
|
| 136 |
return color_image
|
| 137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
def get_prompt_id(prompt):
|
| 139 |
md5 = hashlib.md5()
|
| 140 |
md5.update(prompt.encode('utf-8'))
|
|
|
|
| 158 |
text_tokenizer: T5TokenizerFast = AutoTokenizer.from_pretrained(t5_path, revision=None, legacy=True)
|
| 159 |
text_tokenizer.model_max_length = 512
|
| 160 |
text_encoder: T5EncoderModel = T5EncoderModel.from_pretrained(t5_path, torch_dtype=torch.float16)
|
| 161 |
+
text_encoder.to(DEVICE)
|
| 162 |
text_encoder.eval()
|
| 163 |
text_encoder.requires_grad_(False)
|
| 164 |
return text_tokenizer, text_encoder
|
|
|
|
| 173 |
model_path='',
|
| 174 |
scale_schedule=None,
|
| 175 |
vae=None,
|
|
|
|
| 176 |
model_kwargs=None,
|
| 177 |
text_channels=2048,
|
| 178 |
apply_spatial_patchify=0,
|
|
|
|
| 181 |
):
|
| 182 |
print(f'[Loading Infinity]')
|
| 183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
# Set autocast dtype based on bf16 and device support
|
| 185 |
+
if bf16 and DEVICE.type == 'cuda' and torch.cuda.is_bf16_supported():
|
| 186 |
autocast_dtype = torch.bfloat16
|
| 187 |
else:
|
| 188 |
autocast_dtype = torch.float32
|
|
|
|
| 191 |
text_maxlen = 512
|
| 192 |
torch.cuda.empty_cache()
|
| 193 |
|
| 194 |
+
with torch.amp.autocast(device_type=DEVICE.type, dtype=autocast_dtype), torch.no_grad():
|
| 195 |
infinity_test: Infinity = Infinity(
|
| 196 |
vae_local=vae, text_channels=text_channels, text_maxlen=text_maxlen,
|
| 197 |
shared_aln=True, raw_scale_schedule=scale_schedule,
|
|
|
|
| 209 |
inference_mode=True,
|
| 210 |
train_h_div_w_list=[1.0],
|
| 211 |
**model_kwargs,
|
| 212 |
+
).to(DEVICE)
|
| 213 |
|
| 214 |
print(f'[you selected Infinity with {model_kwargs=}] model size: {sum(p.numel() for p in infinity_test.parameters())/1e9:.2f}B, bf16={bf16}')
|
| 215 |
|
|
|
|
| 221 |
infinity_test.requires_grad_(False)
|
| 222 |
|
| 223 |
print(f'[Load Infinity weights]')
|
| 224 |
+
state_dict = torch.load(model_path, map_location=DEVICE)
|
| 225 |
print(infinity_test.load_state_dict(state_dict))
|
| 226 |
|
| 227 |
+
# Initialize random number generator
|
| 228 |
+
infinity_test.rng = torch.Generator(device=DEVICE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
return infinity_test
|
| 231 |
|
|
|
|
| 267 |
return gt_img, recons_img, all_bit_indices
|
| 268 |
|
| 269 |
def load_visual_tokenizer(args):
|
| 270 |
+
device = DEVICE
|
| 271 |
# load vae
|
| 272 |
if args.vae_type in [16,18,20,24,32,64]:
|
| 273 |
from models.bsq_vae.vae import vae_model
|
|
|
|
| 310 |
if not osp.exists(local_model_path):
|
| 311 |
print(f'copy {model_path} to {local_model_path}')
|
| 312 |
shutil.copyfile(model_path, local_model_path)
|
| 313 |
+
save_slim_model(local_model_path, save_file=local_slim_model_path, device=DEVICE)
|
| 314 |
print(f'copy {local_slim_model_path} to {slim_model_path}')
|
| 315 |
if not osp.exists(slim_model_path):
|
| 316 |
shutil.copyfile(local_slim_model_path, slim_model_path)
|
|
|
|
| 321 |
slim_model_path = model_path
|
| 322 |
print(f'load checkpoint from {slim_model_path}')
|
| 323 |
|
| 324 |
+
model_config = ModelConfig.from_type(args.model_type)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
infinity = load_infinity(
|
| 326 |
rope2d_each_sa_layer=args.rope2d_each_sa_layer,
|
| 327 |
rope2d_normalized_by_hw=args.rope2d_normalized_by_hw,
|
|
|
|
| 332 |
model_path=slim_model_path,
|
| 333 |
scale_schedule=None,
|
| 334 |
vae=vae,
|
| 335 |
+
model_kwargs=model_config.to_dict(),
|
|
|
|
| 336 |
text_channels=args.text_channels,
|
| 337 |
apply_spatial_patchify=args.apply_spatial_patchify,
|
| 338 |
use_flex_attn=args.use_flex_attn,
|
|
|
|
| 399 |
weights_path.mkdir(exist_ok=True)
|
| 400 |
download_infinity_weights(weights_path)
|
| 401 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 402 |
# Define args
|
| 403 |
args = argparse.Namespace(
|
| 404 |
pn='1M',
|
|
|
|
| 420 |
cache_dir='/dev/shm',
|
| 421 |
checkpoint_type='torch',
|
| 422 |
seed=0,
|
| 423 |
+
bf16=1 if torch.bfloat16 == torch.get_default_dtype() else 0,
|
| 424 |
save_file='tmp.jpg',
|
| 425 |
enable_model_cache=False,
|
| 426 |
)
|
|
|
|
| 433 |
# Define the image generation function
|
| 434 |
@spaces.GPU
|
| 435 |
def generate_image(prompt, cfg, tau, h_div_w, seed, enable_positive_prompt=False):
|
| 436 |
+
"""Generate an image from a prompt with integrated generation logic."""
|
| 437 |
try:
|
| 438 |
+
# Set random seed for reproducibility
|
| 439 |
+
if seed is not None:
|
| 440 |
+
torch.manual_seed(seed)
|
| 441 |
+
random.seed(seed)
|
| 442 |
+
np.random.seed(seed)
|
| 443 |
+
|
| 444 |
+
# Calculate image dimensions
|
| 445 |
+
tgt_h, tgt_w = dynamic_resolution_h_w(h_div_w)
|
| 446 |
+
scale_schedule = None
|
| 447 |
|
| 448 |
+
# Process text prompt
|
| 449 |
+
text_cond_tuple = encode_prompt(text_tokenizer, text_encoder, prompt, enable_positive_prompt)
|
| 450 |
+
|
| 451 |
+
# Set up negative prompt if needed
|
| 452 |
+
negative_prompt = ''
|
| 453 |
+
if negative_prompt:
|
| 454 |
+
negative_cond_tuple = encode_prompt(text_tokenizer, text_encoder, negative_prompt)
|
| 455 |
+
negative_label_B_or_BLT = negative_cond_tuple[0]
|
| 456 |
+
else:
|
| 457 |
+
negative_label_B_or_BLT = None
|
| 458 |
|
| 459 |
+
print(f'cfg: {cfg}, tau: {tau}')
|
|
|
|
|
|
|
| 460 |
|
| 461 |
+
# Generate image with automatic mixed precision
|
| 462 |
+
with torch.amp.autocast(device_type=DEVICE.type, dtype=torch.bfloat16):
|
| 463 |
+
stt = time.time()
|
| 464 |
+
_, _, img_list = infinity.autoregressive_infer_cfg(
|
| 465 |
+
vae=vae,
|
| 466 |
+
text_cond_tuple=text_cond_tuple,
|
| 467 |
+
negative_label_B_or_BLT=negative_label_B_or_BLT,
|
| 468 |
+
cfg_list=[cfg],
|
| 469 |
+
tau_list=[tau],
|
| 470 |
+
top_k=900,
|
| 471 |
+
top_p=0.97,
|
| 472 |
+
cfg_sc=3,
|
| 473 |
+
cfg_exp_k=0.0,
|
| 474 |
+
cfg_insertion_layer=[args.cfg_insertion_layer],
|
| 475 |
+
vae_type=args.vae_type,
|
| 476 |
+
gumbel=0,
|
| 477 |
+
softmax_merge_topk=-1,
|
| 478 |
+
gt_leak=0,
|
| 479 |
+
gt_ls_Bl=None,
|
| 480 |
+
g_seed=seed,
|
| 481 |
+
sampling_per_bits=args.sampling_per_bits,
|
| 482 |
+
scale_schedule=scale_schedule,
|
| 483 |
+
)
|
| 484 |
+
print(f'inference time: {time.time()-stt:.3f}s')
|
| 485 |
|
| 486 |
+
# Convert the image efficiently
|
| 487 |
+
with torch.no_grad():
|
| 488 |
+
image = img_list[0].cpu().numpy()
|
| 489 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 490 |
+
image = np.uint8(image)
|
| 491 |
|
| 492 |
return image
|
| 493 |
except Exception as e:
|
|
|
|
| 497 |
# Set up Gradio interface
|
| 498 |
with gr.Blocks() as demo:
|
| 499 |
gr.Markdown("<h1><center>Infinity Image Generator</center></h1>")
|
| 500 |
+
gr.Markdown("### Instructions")
|
| 501 |
+
gr.Markdown("1. Enter a prompt in the **Prompt Settings** section.")
|
| 502 |
+
gr.Markdown("2. Click the **Enhance Prompt** button to generate a more creative and detailed prompt.")
|
| 503 |
+
gr.Markdown("3. Adjust the **Image Settings** as desired.")
|
| 504 |
+
gr.Markdown("4. Click the **Generate Image** button to generate the image on the right.")
|
| 505 |
|
| 506 |
with gr.Row():
|
| 507 |
with gr.Column():
|