Infinity / utils /amp_opt.py
MohamedRashad's picture
Add initial project structure with requirements and utility functions
32287b3
import math
import os
import signal
import sys
import time
from typing import List, Optional, Tuple, Union
import torch
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
# from memory_profiler import profile
import infinity.utils.dist as dist
from infinity.utils import misc
class NullCtx:
def __enter__(self):
pass
def __exit__(self, exc_type, exc_val, exc_tb):
pass
def handle_timeout(signum, frame):
raise TimeoutError('took too long')
def per_param_clip_grad_norm_(parameters, thresh: float, stable=False, fp=None) -> (float, float):
skipped, max_grad = [], 0
for pi, p in enumerate(parameters):
if p.grad is not None:
g = p.grad.data.norm(2).item() + 1e-7
max_grad = max(max_grad, g)
clip_coef = thresh / g
if clip_coef < 1:
if stable and clip_coef < 0.2:
skipped.append(clip_coef)
p.grad.data.mul_(0) # todo NOTE: inf.mul_(0)==nan will shrink the scale ratio, but inf.zero_()==0 won't
else:
p.grad.data.mul_(clip_coef)
# if fp is not None: fp.write(f'[per_param_clip_grad_norm_:47] finished.\n'); fp.flush()
return 0 if len(skipped) == 0 else math.log10(max(min(skipped), 1e-7)), max_grad
class AmpOptimizer:
def __init__(
self,
model_name_3letters: str, mixed_precision: int,
optimizer: torch.optim.Optimizer, model_maybe_fsdp: Union[torch.nn.Module, FSDP],
r_accu: float, grad_clip: float, zero: int,
):
self.enable_amp = mixed_precision > 0
self.zero = zero
if self.enable_amp:
self.using_fp16_rather_bf16 = mixed_precision != 2
self.max_sc = float(mixed_precision if mixed_precision > 128 else 32768)
# todo: on both V100 and A100, torch.get_autocast_gpu_dtype() returns fp16, not bf16.
self.amp_ctx = torch.autocast('cuda', enabled=True, dtype=torch.float16 if self.using_fp16_rather_bf16 else torch.bfloat16, cache_enabled=self.zero == 0) # todo: cache_enabled=False
if self.using_fp16_rather_bf16:
self.scaler = torch.cuda.amp.GradScaler(init_scale=2. ** 11, growth_interval=1000)
else:
self.scaler = None
else:
self.using_fp16_rather_bf16 = True
self.amp_ctx = NullCtx()
self.scaler = None
t = torch.zeros(dist.get_world_size())
t[dist.get_rank()] = float(self.enable_amp)
dist.allreduce(t)
assert round(t.sum().item()) in {0, dist.get_world_size()}, f'enable_amp: {t}'
t = torch.zeros(dist.get_world_size())
t[dist.get_rank()] = float(self.using_fp16_rather_bf16)
dist.allreduce(t)
assert round(t.sum().item()) in {0, dist.get_world_size()}, f'using_fp16_rather_bf16: {t}'
self.model_name_3letters = model_name_3letters
self.optimizer, self.model_maybe_fsdp = optimizer, model_maybe_fsdp
self.r_accu = r_accu
self.paras = self.names = ... # todo: solve EMA-related codes
self.grad_clip, self.grad_clip_we = grad_clip, 0 # todo: disable wclip
if self.grad_clip > 100:
self.grad_clip %= 100
self.per_param = True
else:
self.per_param = False
self.per_param = False # todo: disable wclip
self.early_clipping = grad_clip > 0 and not hasattr(optimizer, 'global_grad_norm')
self.late_clipping = grad_clip > 0 and hasattr(optimizer, 'global_grad_norm') # deepspeed's optimizer
self.fp = None
self.last_orig_norm: torch.Tensor = torch.tensor(0.1)
@torch.no_grad()
def log_param(self, ep: int):
if self.zero == 0:
for name, values in get_param_for_log(self.model_name_3letters, self.model_maybe_fsdp.named_parameters()).items():
values: List[float]
if len(values) == 1: # e.g., cls token will only have one value
values.append(values[0])
else:
...
# todo: log params
# @profile(precision=4, stream=open('amp_sc.log', 'w+'))
def backward_clip_step(
self, ep: int, it: int, g_it: int, stepping: bool, logging_params: bool, loss: torch.Tensor, clip_decay_ratio=1, stable=False,
) -> Tuple[torch.Tensor, Optional[float]]:
# backward
loss = loss.mul(self.r_accu) # r_accu == 1.0 / n_gradient_accumulation
orig_norm = scaler_sc = None
# if self.fp is not None:
# if g_it % 20 == 0: self.fp.seek(0); self.fp.truncate(0)
if self.scaler is not None:
self.scaler.scale(loss).backward(retain_graph=False, create_graph=False) # retain_graph=retain_graph, create_graph=create_graph
else:
loss.backward(retain_graph=False, create_graph=False)
# if self.fp is not None: self.fp.write(f'[backward_clip_step:131] [it{it}, g_it{g_it}] after backward\n'); self.fp.flush()
# clip gradients then step optimizer
if stepping:
if self.scaler is not None: self.scaler.unscale_(self.optimizer) # now the gradient can be correctly got
# if self.fp is not None: self.fp.write(f'[backward_clip_step:137] [it{it}, g_it{g_it}] after scaler.unscale_\n'); self.fp.flush()
skipped, orig_norm = 0, self.last_orig_norm
# try:
if self.fp is not None:
if g_it % 10 == 0: self.fp.seek(0); self.fp.truncate(0)
self.fp.write(f'<ep{ep} it{it} {g_it}>\n'); self.fp.flush()
if self.early_clipping:
c = self.grad_clip * clip_decay_ratio
if self.zero:
orig_norm: Optional[torch.Tensor] = self.model_maybe_fsdp.clip_grad_norm_(c)
else:
orig_norm: Optional[torch.Tensor] = torch.nn.utils.clip_grad_norm_(self.model_maybe_fsdp.parameters(), c)
# if self.fp is not None: self.fp.write(f'[backward_clip_step:175] [it{it}, g_it{g_it}] before opt step\n'); self.fp.flush()
if self.scaler is not None:
self.scaler: torch.cuda.amp.GradScaler
if self.zero:
# synchronize found_inf_per_device before calling step, so that even if only some ranks found inf on their sharded params, all other ranks will know
# otherwise, when saving FSDP optimizer state, it will cause AssertionError saying "Different ranks have different values for step."
for optimizer_state in self.scaler._per_optimizer_states.values():
for t in optimizer_state['found_inf_per_device'].values():
dist.allreduce(t) # ideally, each rank only has one single t; so no need to use async allreduce
self.scaler.step(self.optimizer)
scaler_sc: Optional[float] = self.scaler.get_scale()
if scaler_sc > self.max_sc: # fp16 will overflow when >65536, so multiply 32768 could be dangerous
# print(f'[fp16 scaling] too large loss scale {scaler_sc}! (clip to {self.max_sc:g})')
self.scaler.update(new_scale=self.max_sc)
else:
self.scaler.update()
try:
scaler_sc = float(math.log2(scaler_sc))
except Exception as e:
print(f'[scaler_sc = {scaler_sc}]\n' * 15, flush=True)
time.sleep(1)
print(f'[scaler_sc = {scaler_sc}]\n' * 15, flush=True)
raise e
else:
self.optimizer.step()
if self.late_clipping:
orig_norm: Optional[torch.Tensor] = self.optimizer.global_grad_norm
self.last_orig_norm = orig_norm
# no zero_grad calling here, gonna log those gradients!
return orig_norm, scaler_sc
def state_dict(self):
return {
'optimizer': self.optimizer.state_dict()
} if self.scaler is None else {
'scaler': self.scaler.state_dict(),
'optimizer': self.optimizer.state_dict()
}
def load_state_dict(self, state, strict=True):
if self.scaler is not None:
try: self.scaler.load_state_dict(state['scaler'])
except Exception as e: print(f'[fp16 load_state_dict err] {e}')
self.optimizer.load_state_dict(state['optimizer'])