Infinity / models /bsq_vae /multiscale_bsq.py
MohamedRashad's picture
Add initial project structure with requirements and utility functions
32287b3
"""
Binary Spherical Quantization
Proposed in https://arxiv.org/abs/2406.07548
In the simplest setup, each dimension is quantized into {-1, 1}.
An entropy penalty is used to encourage utilization.
"""
import random
from math import log2, ceil
from functools import partial, cache
from collections import namedtuple
from contextlib import nullcontext
import torch.distributed as dist
from torch.distributed import nn as dist_nn
import torch
from torch import nn, einsum
import torch.nn.functional as F
from torch.nn import Module
from torch.amp import autocast
import numpy as np
from einops import rearrange, reduce, pack, unpack
# from einx import get_at
from .dynamic_resolution import predefined_HW_Scales_dynamic
# constants
Return = namedtuple('Return', ['quantized', 'indices', 'bit_indices', 'entropy_aux_loss'])
LossBreakdown = namedtuple('LossBreakdown', ['per_sample_entropy', 'batch_entropy', 'commitment'])
# distributed helpers
@cache
def is_distributed():
return dist.is_initialized() and dist.get_world_size() > 1
def maybe_distributed_mean(t):
if not is_distributed():
return t
dist_nn.all_reduce(t)
t = t / dist.get_world_size()
return t
# helper functions
def exists(v):
return v is not None
def identity(t):
return t
def default(*args):
for arg in args:
if exists(arg):
return arg() if callable(arg) else arg
return None
def round_up_multiple(num, mult):
return ceil(num / mult) * mult
def pack_one(t, pattern):
return pack([t], pattern)
def unpack_one(t, ps, pattern):
return unpack(t, ps, pattern)[0]
def l2norm(t):
return F.normalize(t, dim = -1)
# entropy
def log(t, eps = 1e-5):
return t.clamp(min = eps).log()
def entropy(prob):
return (-prob * log(prob)).sum(dim=-1)
# cosine sim linear
class CosineSimLinear(Module):
def __init__(
self,
dim_in,
dim_out,
scale = 1.
):
super().__init__()
self.scale = scale
self.weight = nn.Parameter(torch.randn(dim_in, dim_out))
def forward(self, x):
x = F.normalize(x, dim = -1)
w = F.normalize(self.weight, dim = 0)
return (x @ w) * self.scale
def get_latent2scale_schedule(T: int, H: int, W: int, mode="original"):
assert mode in ["original", "dynamic", "dense", "same1", "same2", "same3"]
predefined_HW_Scales = {
# 256 * 256
(32, 32): [(1, 1), (2, 2), (3, 3), (4, 4), (6, 6), (9, 9), (13, 13), (18, 18), (24, 24), (32, 32)],
(16, 16): [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (8, 8), (10, 10), (13, 13), (16, 16)],
# 1024x1024
(64, 64): [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (7, 7), (9, 9), (12, 12), (16, 16), (21, 21), (27, 27), (36, 36), (48, 48), (64, 64)],
(36, 64): [(1, 1), (2, 2), (3, 3), (4, 4), (6, 6), (9, 12), (13, 16), (18, 24), (24, 32), (32, 48), (36, 64)],
}
if mode == "dynamic":
predefined_HW_Scales.update(predefined_HW_Scales_dynamic)
elif mode == "dense":
predefined_HW_Scales[(16, 16)] = [(x, x) for x in range(1, 16+1)]
predefined_HW_Scales[(32, 32)] = predefined_HW_Scales[(16, 16)] + [(20, 20), (24, 24), (28, 28), (32, 32)]
predefined_HW_Scales[(64, 64)] = predefined_HW_Scales[(32, 32)] + [(40, 40), (48, 48), (56, 56), (64, 64)]
elif mode.startswith("same"):
num_quant = int(mode[len("same"):])
predefined_HW_Scales[(16, 16)] = [(16, 16) for _ in range(num_quant)]
predefined_HW_Scales[(32, 32)] = [(32, 32) for _ in range(num_quant)]
predefined_HW_Scales[(64, 64)] = [(64, 64) for _ in range(num_quant)]
predefined_T_Scales = [1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 17, 17, 17, 17]
patch_THW_shape_per_scale = predefined_HW_Scales[(H, W)]
if len(predefined_T_Scales) < len(patch_THW_shape_per_scale):
# print("warning: the length of predefined_T_Scales is less than the length of patch_THW_shape_per_scale!")
predefined_T_Scales += [predefined_T_Scales[-1]] * (len(patch_THW_shape_per_scale) - len(predefined_T_Scales))
patch_THW_shape_per_scale = [(min(T, t), h, w ) for (h, w), t in zip(patch_THW_shape_per_scale, predefined_T_Scales[:len(patch_THW_shape_per_scale)])]
return patch_THW_shape_per_scale
class LayerNorm(nn.Module):
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
normalized_shape: int
"""
def __init__(self, normalized_shape, norm_weight=False, eps=1e-6, data_format="channels_first"):
super().__init__()
if norm_weight:
self.weight = nn.Parameter(torch.ones(normalized_shape)/(normalized_shape**0.5))
else:
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape, )
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
if x.ndim == 4: # (b, c, h, w)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
elif x.ndim == 5: # (b, c, t, h, w)
x = self.weight[:, None, None, None] * x + self.bias[:, None, None, None]
else:
raise ValueError("the number of dimensions of the input should be 4 or 5")
return x
class MultiScaleBSQ(Module):
""" Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf """
def __init__(
self,
*,
dim,
codebook_size,
soft_clamp_input_value = None,
aux_loss = False, # intermediate auxiliary loss
ln_before_quant=False, # add a LN before multi-scale RQ
ln_init_by_sqrt=False, # weight init by 1/sqrt(d)
use_decay_factor=False,
use_stochastic_depth=False,
drop_rate=0.,
schedule_mode="original", # ["original", "dynamic", "dense"]
keep_first_quant=False,
keep_last_quant=False,
remove_residual_detach=False,
random_flip = False,
flip_prob = 0.5,
flip_mode = "stochastic", # "stochastic", "deterministic"
max_flip_lvl = 1,
random_flip_1lvl = False, # random flip one level each time
flip_lvl_idx = None,
drop_when_test=False,
drop_lvl_idx=None,
drop_lvl_num=0,
**kwargs
):
super().__init__()
codebook_dim = int(log2(codebook_size))
requires_projection = codebook_dim != dim
self.project_in = nn.Linear(dim, codebook_dim) if requires_projection else nn.Identity()
self.project_out = nn.Linear(codebook_dim, dim) if requires_projection else nn.Identity()
self.has_projections = requires_projection
self.layernorm = LayerNorm(codebook_dim, norm_weight=ln_init_by_sqrt) if ln_before_quant else nn.Identity()
self.use_stochastic_depth = use_stochastic_depth
self.drop_rate = drop_rate
self.remove_residual_detach = remove_residual_detach
self.random_flip = random_flip
self.flip_prob = flip_prob
self.flip_mode = flip_mode
self.max_flip_lvl = max_flip_lvl
self.random_flip_1lvl = random_flip_1lvl
self.flip_lvl_idx = flip_lvl_idx
assert (random_flip and random_flip_1lvl) == False
self.drop_when_test = drop_when_test
self.drop_lvl_idx = drop_lvl_idx
self.drop_lvl_num = drop_lvl_num
if self.drop_when_test:
assert drop_lvl_idx is not None
assert drop_lvl_num > 0
self.lfq = BSQ(
dim = codebook_dim,
codebook_scale = 1/np.sqrt(codebook_dim),
soft_clamp_input_value = soft_clamp_input_value,
# experimental_softplus_entropy_loss=True,
# entropy_loss_offset=2,
**kwargs
)
self.z_interplote_up = 'trilinear'
self.z_interplote_down = 'area'
self.use_decay_factor = use_decay_factor
self.schedule_mode = schedule_mode
self.keep_first_quant = keep_first_quant
self.keep_last_quant = keep_last_quant
if self.use_stochastic_depth and self.drop_rate > 0:
assert self.keep_first_quant or self.keep_last_quant
@property
def codebooks(self):
return self.lfq.codebook
def get_codes_from_indices(self, indices_list):
all_codes = []
for indices in indices_list:
codes = self.lfq.indices_to_codes(indices)
all_codes.append(codes)
_, _, T, H, W = all_codes[-1].size()
summed_codes = 0
for code in all_codes:
summed_codes += F.interpolate(code, size=(T, H, W), mode=self.z_interplote_up)
return summed_codes
def get_output_from_indices(self, indices):
codes = self.get_codes_from_indices(indices)
codes_summed = reduce(codes, 'q ... -> ...', 'sum')
return self.project_out(codes_summed)
def flip_quant(self, x):
assert self.flip_mode == 'stochastic'
flip_mask = torch.rand_like(x) < self.flip_prob
x = x.clone()
x[flip_mask] = -x[flip_mask]
return x
def forward(
self,
x,
scale_schedule=None,
mask = None,
return_all_codes = False,
return_residual_norm_per_scale = False
):
if x.ndim == 4:
x = x.unsqueeze(2)
B, C, T, H, W = x.size()
if scale_schedule is None:
if self.schedule_mode.startswith("same"):
scale_num = int(self.schedule_mode[len("same"):])
assert T == 1
scale_schedule = [(1, H, W)] * scale_num
else:
scale_schedule = get_latent2scale_schedule(T, H, W, mode=self.schedule_mode)
scale_num = len(scale_schedule)
# x = self.project_in(x)
x = x.permute(0, 2, 3, 4, 1).contiguous() # (b, c, t, h, w) => (b, t, h, w, c)
x = self.project_in(x)
x = x.permute(0, 4, 1, 2, 3).contiguous() # (b, t, h, w, c) => (b, c, t, h, w)
x = self.layernorm(x)
quantized_out = 0.
residual = x
all_losses = []
all_indices = []
all_bit_indices = []
var_inputs = []
residual_norm_per_scale = []
# go through the layers
out_fact = init_out_fact = 1.0
# residual_list = []
# interpolate_residual_list = []
# quantized_list = []
if self.drop_when_test:
drop_lvl_start = self.drop_lvl_idx
drop_lvl_end = self.drop_lvl_idx + self.drop_lvl_num
scale_num = len(scale_schedule)
with autocast('cuda', enabled = False):
for si, (pt, ph, pw) in enumerate(scale_schedule):
out_fact = max(0.1, out_fact) if self.use_decay_factor else init_out_fact
if (pt, ph, pw) != (T, H, W):
interpolate_residual = F.interpolate(residual, size=(pt, ph, pw), mode=self.z_interplote_down)
else:
interpolate_residual = residual
if return_residual_norm_per_scale:
residual_norm_per_scale.append((torch.abs(interpolate_residual) < 0.05 * self.lfq.codebook_scale).sum() / interpolate_residual.numel())
# residual_list.append(torch.norm(residual.detach(), dim=1).mean())
# interpolate_residual_list.append(torch.norm(interpolate_residual.detach(), dim=1).mean())
if self.training and self.use_stochastic_depth and random.random() < self.drop_rate:
if (si == 0 and self.keep_first_quant) or (si == scale_num - 1 and self.keep_last_quant):
quantized, indices, _, loss = self.lfq(interpolate_residual)
quantized = quantized * out_fact
all_indices.append(indices)
all_losses.append(loss)
else:
quantized = torch.zeros_like(interpolate_residual)
elif self.drop_when_test and drop_lvl_start <= si < drop_lvl_end:
continue
else:
# residual_norm = torch.norm(interpolate_residual.detach(), dim=1) # (b, t, h, w)
# print(si, residual_norm.min(), residual_norm.max(), residual_norm.mean())
quantized, indices, bit_indices, loss = self.lfq(interpolate_residual)
if self.random_flip and si < self.max_flip_lvl:
quantized = self.flip_quant(quantized)
if self.random_flip_1lvl and si == self.flip_lvl_idx:
quantized = self.flip_quant(quantized)
quantized = quantized * out_fact
all_indices.append(indices)
# quantized_list.append(torch.norm(quantized.detach(), dim=1).mean())
if (pt, ph, pw) != (T, H, W):
quantized = F.interpolate(quantized, size=(T, H, W), mode=self.z_interplote_up).contiguous()
if self.remove_residual_detach:
residual = residual - quantized
else:
residual = residual - quantized.detach()
quantized_out = quantized_out + quantized
all_bit_indices.append(bit_indices)
all_losses.append(loss)
if si != scale_num - 1:
var_inputs.append(F.interpolate(quantized_out, size=scale_schedule[si+1], mode=self.z_interplote_down).contiguous())
if self.use_decay_factor:
out_fact -= 0.1
# print("residual_list:", residual_list)
# print("interpolate_residual_list:", interpolate_residual_list)
# print("quantized_list:", quantized_list)
# import ipdb; ipdb.set_trace()
# project out, if needed
quantized_out = quantized_out.permute(0, 2, 3, 4, 1).contiguous() # (b, c, t, h, w) => (b, t, h, w, c)
quantized_out = self.project_out(quantized_out)
quantized_out = quantized_out.permute(0, 4, 1, 2, 3).contiguous() # (b, t, h, w, c) => (b, c, t, h, w)
# image
if quantized_out.size(2) == 1:
quantized_out = quantized_out.squeeze(2)
# stack all losses and indices
all_losses = torch.stack(all_losses, dim = -1)
ret = (quantized_out, all_indices, all_bit_indices, residual_norm_per_scale, all_losses, var_inputs)
if not return_all_codes:
return ret
# whether to return all codes from all codebooks across layers
all_codes = self.get_codes_from_indices(all_indices)
# will return all codes in shape (quantizer, batch, sequence length, codebook dimension)
return (*ret, all_codes)
class BSQ(Module):
def __init__(
self,
*,
dim = None,
codebook_size = None,
entropy_loss_weight = 0.1,
commitment_loss_weight = 0.25,
diversity_gamma = 1.,
straight_through_activation = nn.Identity(),
num_codebooks = 1,
keep_num_codebooks_dim = None,
codebook_scale = 1., # for residual LFQ, codebook scaled down by 2x at each layer
frac_per_sample_entropy = 1., # make less than 1. to only use a random fraction of the probs for per sample entropy
has_projections = None,
projection_has_bias = True,
soft_clamp_input_value = None,
cosine_sim_project_in = False,
cosine_sim_project_in_scale = None,
channel_first = None,
experimental_softplus_entropy_loss = False,
entropy_loss_offset = 5., # how much to shift the loss before softplus
spherical = True, # from https://arxiv.org/abs/2406.07548
force_quantization_f32 = True, # will force the quantization step to be full precision
inv_temperature = 100.0,
gamma0=1.0, gamma=1.0, zeta=1.0,
preserve_norm = False, # whether to preserve the original norm info
new_quant = False, # new quant function,
mask_out = False, # mask the output as 0 in some conditions
use_out_phi = False, # use output phi network
use_out_phi_res = False, # residual out phi
):
super().__init__()
# some assert validations
assert exists(dim) or exists(codebook_size), 'either dim or codebook_size must be specified for LFQ'
assert not exists(codebook_size) or log2(codebook_size).is_integer(), f'your codebook size must be a power of 2 for lookup free quantization (suggested {2 ** ceil(log2(codebook_size))})'
codebook_size = default(codebook_size, lambda: 2 ** dim)
self.codebook_size = codebook_size
codebook_dim = int(log2(codebook_size))
codebook_dims = codebook_dim * num_codebooks
dim = default(dim, codebook_dims)
self.codebook_dims = codebook_dims
has_projections = default(has_projections, dim != codebook_dims)
if cosine_sim_project_in:
cosine_sim_project_in = default(cosine_sim_project_in_scale, codebook_scale)
project_in_klass = partial(CosineSimLinear, scale = cosine_sim_project_in)
else:
project_in_klass = partial(nn.Linear, bias = projection_has_bias)
self.project_in = project_in_klass(dim, codebook_dims) if has_projections else nn.Identity() # nn.Identity()
self.project_out = nn.Linear(codebook_dims, dim, bias = projection_has_bias) if has_projections else nn.Identity() # nn.Identity()
self.has_projections = has_projections
self.out_phi = nn.Linear(codebook_dims, codebook_dims) if use_out_phi else nn.Identity()
self.use_out_phi_res = use_out_phi_res
if self.use_out_phi_res:
self.out_phi_scale = nn.Parameter(torch.zeros(codebook_dims), requires_grad=True) # init as zero
self.dim = dim
self.codebook_dim = codebook_dim
self.num_codebooks = num_codebooks
keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1)
assert not (num_codebooks > 1 and not keep_num_codebooks_dim)
self.keep_num_codebooks_dim = keep_num_codebooks_dim
# channel first
self.channel_first = channel_first
# straight through activation
self.activation = straight_through_activation
# For BSQ (binary spherical quantization)
if not spherical:
raise ValueError("For BSQ, spherical must be True.")
self.persample_entropy_compute = 'analytical'
self.inv_temperature = inv_temperature
self.gamma0 = gamma0 # loss weight for entropy penalty
self.gamma = gamma # loss weight for entropy penalty
self.zeta = zeta # loss weight for entire entropy penalty
self.preserve_norm = preserve_norm
self.new_quant = new_quant
self.mask_out = mask_out
# entropy aux loss related weights
assert 0 < frac_per_sample_entropy <= 1.
self.frac_per_sample_entropy = frac_per_sample_entropy
self.diversity_gamma = diversity_gamma
self.entropy_loss_weight = entropy_loss_weight
# codebook scale
self.codebook_scale = codebook_scale
# commitment loss
self.commitment_loss_weight = commitment_loss_weight
# whether to soft clamp the input value from -value to value
self.soft_clamp_input_value = soft_clamp_input_value
assert not exists(soft_clamp_input_value) or soft_clamp_input_value >= codebook_scale
# whether to make the entropy loss positive through a softplus (experimental, please report if this worked or not in discussions)
self.entropy_loss_offset = entropy_loss_offset
self.experimental_softplus_entropy_loss = experimental_softplus_entropy_loss
# for no auxiliary loss, during inference
self.register_buffer('mask', 2 ** torch.arange(codebook_dim - 1, -1, -1))
self.register_buffer('zero', torch.tensor(0.), persistent = False)
# whether to force quantization step to be f32
self.force_quantization_f32 = force_quantization_f32
# codes
# all_codes = torch.arange(codebook_size)
# bits = ((all_codes[..., None].int() & self.mask) != 0).float()
# codebook = self.bits_to_codes(bits)
# self.register_buffer('codebook', codebook.float(), persistent = False)
def bits_to_codes(self, bits):
return bits * self.codebook_scale * 2 - self.codebook_scale
# @property
# def dtype(self):
# return self.codebook.dtype
def indices_to_codes(
self,
indices,
label_type = 'int_label',
project_out = True
):
assert label_type in ['int_label', 'bit_label']
is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim))
should_transpose = default(self.channel_first, is_img_or_video)
if not self.keep_num_codebooks_dim:
if label_type == 'int_label':
indices = rearrange(indices, '... -> ... 1')
else:
indices = indices.unsqueeze(-2)
# indices to codes, which are bits of either -1 or 1
if label_type == 'int_label':
assert indices[..., None].int().min() > 0
bits = ((indices[..., None].int() & self.mask) != 0).float() # .to(self.dtype)
else:
bits = indices
codes = self.bits_to_codes(bits)
codes = l2norm(codes) # must normalize when using BSQ
codes = rearrange(codes, '... c d -> ... (c d)')
# whether to project codes out to original dimensions
# if the input feature dimensions were not log2(codebook size)
if project_out:
codes = self.project_out(codes)
# rearrange codes back to original shape
if should_transpose:
codes = rearrange(codes, 'b ... d -> b d ...')
return codes
def quantize(self, z):
assert z.shape[-1] == self.codebook_dims, f"Expected {self.codebook_dims} dimensions, got {z.shape[-1]}"
zhat = torch.where(z > 0,
torch.tensor(1, dtype=z.dtype, device=z.device),
torch.tensor(-1, dtype=z.dtype, device=z.device))
return z + (zhat - z).detach()
def quantize_new(self, z):
assert z.shape[-1] == self.codebook_dims, f"Expected {self.codebook_dims} dimensions, got {z.shape[-1]}"
zhat = torch.where(z > 0,
torch.tensor(1, dtype=z.dtype, device=z.device),
torch.tensor(-1, dtype=z.dtype, device=z.device))
q_scale = 1. / (self.codebook_dims ** 0.5)
zhat = q_scale * zhat # on unit sphere
return z + (zhat - z).detach()
def soft_entropy_loss(self, z):
if self.persample_entropy_compute == 'analytical':
# if self.l2_norm:
p = torch.sigmoid(-4 * z / (self.codebook_dims ** 0.5) * self.inv_temperature)
# else:
# p = torch.sigmoid(-4 * z * self.inv_temperature)
prob = torch.stack([p, 1-p], dim=-1) # (b, h, w, 18, 2)
per_sample_entropy = self.get_entropy(prob, dim=-1, normalize=False).sum(dim=-1).mean() # (b,h,w,18)->(b,h,w)->scalar
else:
per_sample_entropy = self.get_entropy(prob, dim=-1, normalize=False).sum(dim=-1).mean()
# macro average of the probability of each subgroup
avg_prob = reduce(prob, '... g d ->g d', 'mean') # (18, 2)
codebook_entropy = self.get_entropy(avg_prob, dim=-1, normalize=False)
# the approximation of the entropy is the sum of the entropy of each subgroup
return per_sample_entropy, codebook_entropy.sum(), avg_prob
def get_entropy(self, count, dim=-1, eps=1e-4, normalize=True):
if normalize: # False
probs = (count + eps) / (count + eps).sum(dim=dim, keepdim =True)
else: # True
probs = count
H = -(probs * torch.log(probs + 1e-8)).sum(dim=dim)
return H
def forward(
self,
x,
return_loss_breakdown = False,
mask = None,
entropy_weight=0.1
):
"""
einstein notation
b - batch
n - sequence (or flattened spatial dimensions)
d - feature dimension, which is also log2(codebook size)
c - number of codebook dim
"""
is_img_or_video = x.ndim >= 4
should_transpose = default(self.channel_first, is_img_or_video)
# standardize image or video into (batch, seq, dimension)
if should_transpose:
x = rearrange(x, 'b d ... -> b ... d')
x, ps = pack_one(x, 'b * d') # x.shape [b, hwt, c]
assert x.shape[-1] == self.dim, f'expected dimension of {self.dim} but received {x.shape[-1]}'
x = self.project_in(x)
# split out number of codebooks
x = rearrange(x, 'b n (c d) -> b n c d', c = self.num_codebooks)
x = l2norm(x)
# whether to force quantization step to be full precision or not
force_f32 = self.force_quantization_f32
quantization_context = partial(autocast, 'cuda', enabled = False) if force_f32 else nullcontext
indices = None
with quantization_context():
if force_f32:
orig_dtype = x.dtype
x = x.float()
# use straight-through gradients (optionally with custom activation fn) if training
if self.new_quant:
quantized = self.quantize_new(x)
# calculate indices
bit_indices = (quantized > 0).int()
entropy_penalty = persample_entropy = cb_entropy = self.zero
commit_loss = self.zero
# input back to original dtype if needed
if force_f32:
x = x.type(orig_dtype)
# merge back codebook dim
x = quantized # rename quantized to x for output
x = rearrange(x, 'b n c d -> b n (c d)')
# project out to feature dimension if needed
x = self.project_out(x)
# reconstitute image or video dimensions
if should_transpose:
x = unpack_one(x, ps, 'b * d')
x = rearrange(x, 'b ... d -> b d ...')
bit_indices = unpack_one(bit_indices, ps, 'b * c d')
# whether to remove single codebook dim
if not self.keep_num_codebooks_dim:
bit_indices = rearrange(bit_indices, '... 1 d -> ... d')
# complete aux loss
aux_loss = commit_loss * self.commitment_loss_weight + (self.zeta * entropy_penalty / self.inv_temperature)*entropy_weight
# returns
ret = Return(x, indices, bit_indices, aux_loss)
if not return_loss_breakdown:
return ret
return ret, LossBreakdown(persample_entropy, cb_entropy, commit_loss)