Infinity / models /bsq_vae /flux_vqgan.py
MohamedRashad's picture
Add initial project structure with requirements and utility functions
32287b3
raw
history blame
24 kB
import argparse
import os
import imageio
import torch
import numpy as np
from einops import rearrange
from torch import Tensor, nn
import torch.nn.functional as F
import torchvision
from torchvision import transforms
from safetensors.torch import load_file
import torch.utils.checkpoint as checkpoint
from .conv import Conv
from .multiscale_bsq import MultiScaleBSQ
ptdtype = {None: torch.float32, 'fp32': torch.float32, 'bf16': torch.bfloat16}
class Normalize(nn.Module):
def __init__(self, in_channels, norm_type, norm_axis="spatial"):
super().__init__()
self.norm_axis = norm_axis
assert norm_type in ['group', 'batch', "no"]
if norm_type == 'group':
if in_channels % 32 == 0:
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
elif in_channels % 24 == 0:
self.norm = nn.GroupNorm(num_groups=24, num_channels=in_channels, eps=1e-6, affine=True)
else:
raise NotImplementedError
elif norm_type == 'batch':
self.norm = nn.SyncBatchNorm(in_channels, track_running_stats=False) # Runtime Error: grad inplace if set track_running_stats to True
elif norm_type == 'no':
self.norm = nn.Identity()
def forward(self, x):
if self.norm_axis == "spatial":
if x.ndim == 4:
x = self.norm(x)
else:
B, C, T, H, W = x.shape
x = rearrange(x, "B C T H W -> (B T) C H W")
x = self.norm(x)
x = rearrange(x, "(B T) C H W -> B C T H W", T=T)
elif self.norm_axis == "spatial-temporal":
x = self.norm(x)
else:
raise NotImplementedError
return x
def swish(x: Tensor) -> Tensor:
try:
return x * torch.sigmoid(x)
except:
device = x.device
x = x.cpu().pin_memory()
return (x*torch.sigmoid(x)).to(device=device)
class AttnBlock(nn.Module):
def __init__(self, in_channels, norm_type='group', cnn_param=None):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels, norm_type, norm_axis=cnn_param["cnn_norm_axis"])
self.q = Conv(in_channels, in_channels, kernel_size=1)
self.k = Conv(in_channels, in_channels, kernel_size=1)
self.v = Conv(in_channels, in_channels, kernel_size=1)
self.proj_out = Conv(in_channels, in_channels, kernel_size=1)
def attention(self, h_: Tensor) -> Tensor:
B, _, T, _, _ = h_.shape
h_ = self.norm(h_)
h_ = rearrange(h_, "B C T H W -> (B T) C H W") # spatial attention only
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
b, c, h, w = q.shape
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
return rearrange(h_, "(b t) 1 (h w) c -> b c t h w", h=h, w=w, c=c, b=B, t=T)
def forward(self, x: Tensor) -> Tensor:
return x + self.proj_out(self.attention(x))
class ResnetBlock(nn.Module):
def __init__(self, in_channels: int, out_channels: int, norm_type='group', cnn_param=None):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.norm1 = Normalize(in_channels, norm_type, norm_axis=cnn_param["cnn_norm_axis"])
if cnn_param["res_conv_2d"] in ["half", "full"]:
self.conv1 = Conv(in_channels, out_channels, kernel_size=3, stride=1, padding=1, cnn_type="2d")
else:
self.conv1 = Conv(in_channels, out_channels, kernel_size=3, stride=1, padding=1, cnn_type=cnn_param["cnn_type"])
self.norm2 = Normalize(out_channels, norm_type, norm_axis=cnn_param["cnn_norm_axis"])
if cnn_param["res_conv_2d"] in ["full"]:
self.conv2 = Conv(out_channels, out_channels, kernel_size=3, stride=1, padding=1, cnn_type="2d")
else:
self.conv2 = Conv(out_channels, out_channels, kernel_size=3, stride=1, padding=1, cnn_type=cnn_param["cnn_type"])
if self.in_channels != self.out_channels:
self.nin_shortcut = Conv(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x):
h = x
h = self.norm1(h)
h = swish(h)
h = self.conv1(h)
h = self.norm2(h)
h = swish(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
x = self.nin_shortcut(x)
return x + h
class Downsample(nn.Module):
def __init__(self, in_channels, cnn_type="2d", spatial_down=False, temporal_down=False):
super().__init__()
assert spatial_down == True
if cnn_type == "2d":
self.pad = (0,1,0,1)
if cnn_type == "3d":
self.pad = (0,1,0,1,0,0) # add padding to the right for h-axis and w-axis. No padding for t-axis
# no asymmetric padding in torch conv, must do it ourselves
self.conv = Conv(in_channels, in_channels, kernel_size=3, stride=2, padding=0, cnn_type=cnn_type, temporal_down=temporal_down)
def forward(self, x: Tensor):
x = nn.functional.pad(x, self.pad, mode="constant", value=0)
x = self.conv(x)
return x
class Upsample(nn.Module):
def __init__(self, in_channels, cnn_type="2d", spatial_up=False, temporal_up=False, use_pxsl=False):
super().__init__()
if cnn_type == "2d":
self.scale_factor = 2
self.causal_offset = 0
else:
assert spatial_up == True
if temporal_up:
self.scale_factor = (2,2,2)
self.causal_offset = -1
else:
self.scale_factor = (1,2,2)
self.causal_offset = 0
self.use_pxsl = use_pxsl
if self.use_pxsl:
self.conv = Conv(in_channels, in_channels*4, kernel_size=3, stride=1, padding=1, cnn_type=cnn_type, causal_offset=self.causal_offset)
self.pxsl = nn.PixelShuffle(2)
else:
self.conv = Conv(in_channels, in_channels, kernel_size=3, stride=1, padding=1, cnn_type=cnn_type, causal_offset=self.causal_offset)
def forward(self, x: Tensor):
if self.use_pxsl:
x = self.conv(x)
x = self.pxsl(x)
else:
try:
x = F.interpolate(x, scale_factor=self.scale_factor, mode="nearest")
except:
# shard across channel
_xs = []
for i in range(x.shape[1]):
_x = F.interpolate(x[:,i:i+1,...], scale_factor=self.scale_factor, mode="nearest")
_xs.append(_x)
x = torch.cat(_xs, dim=1)
x = self.conv(x)
return x
class Encoder(nn.Module):
def __init__(
self,
ch: int,
ch_mult: list[int],
num_res_blocks: int,
z_channels: int,
in_channels = 3,
patch_size=8, temporal_patch_size=4,
norm_type='group', cnn_param=None,
use_checkpoint=False,
use_vae=True,
):
super().__init__()
self.max_down = np.log2(patch_size)
self.temporal_max_down = np.log2(temporal_patch_size)
self.temporal_down_offset = self.max_down - self.temporal_max_down
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.in_channels = in_channels
self.cnn_param = cnn_param
self.use_checkpoint = use_checkpoint
# downsampling
# self.conv_in = Conv(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
# cnn_param["cnn_type"] = "2d" for images, cnn_param["cnn_type"] = "3d" for videos
if cnn_param["conv_in_out_2d"] == "yes": # "yes" for video
self.conv_in = Conv(in_channels, ch, kernel_size=3, stride=1, padding=1, cnn_type="2d")
else:
self.conv_in = Conv(in_channels, ch, kernel_size=3, stride=1, padding=1, cnn_type=cnn_param["cnn_type"])
in_ch_mult = (1,) + tuple(ch_mult)
self.in_ch_mult = in_ch_mult
self.down = nn.ModuleList()
block_in = self.ch
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, norm_type=norm_type, cnn_param=cnn_param))
block_in = block_out
down = nn.Module()
down.block = block
down.attn = attn
# downsample, stride=1, stride=2, stride=2 for 4x8x8 Video VAE
spatial_down = True if i_level < self.max_down else False
temporal_down = True if i_level < self.max_down and i_level >= self.temporal_down_offset else False
if spatial_down or temporal_down:
down.downsample = Downsample(block_in, cnn_type=cnn_param["cnn_type"], spatial_down=spatial_down, temporal_down=temporal_down)
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, norm_type=norm_type, cnn_param=cnn_param)
if cnn_param["cnn_attention"] == "yes":
self.mid.attn_1 = AttnBlock(block_in, norm_type, cnn_param=cnn_param)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, norm_type=norm_type, cnn_param=cnn_param)
# end
self.norm_out = Normalize(block_in, norm_type, norm_axis=cnn_param["cnn_norm_axis"])
if cnn_param["conv_inner_2d"] == "yes":
self.conv_out = Conv(block_in, (int(use_vae) + 1) * z_channels, kernel_size=3, stride=1, padding=1, cnn_type="2d")
else:
self.conv_out = Conv(block_in, (int(use_vae) + 1) * z_channels, kernel_size=3, stride=1, padding=1, cnn_type=cnn_param["cnn_type"])
def forward(self, x, return_hidden=False):
if not self.use_checkpoint:
return self._forward(x, return_hidden=return_hidden)
else:
return checkpoint.checkpoint(self._forward, x, return_hidden, use_reentrant=False)
def _forward(self, x: Tensor, return_hidden=False) -> Tensor:
# downsampling
h0 = self.conv_in(x)
hs = [h0]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1])
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if hasattr(self.down[i_level], "downsample"):
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
hs_mid = [h]
h = self.mid.block_1(h)
if self.cnn_param["cnn_attention"] == "yes":
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
hs_mid.append(h)
# end
h = self.norm_out(h)
h = swish(h)
h = self.conv_out(h)
if return_hidden:
return h, hs, hs_mid
else:
return h
class Decoder(nn.Module):
def __init__(
self,
ch: int,
ch_mult: list[int],
num_res_blocks: int,
z_channels: int,
out_ch = 3,
patch_size=8, temporal_patch_size=4,
norm_type="group", cnn_param=None,
use_checkpoint=False,
use_freq_dec=False, # use frequency features for decoder
use_pxsf=False
):
super().__init__()
self.max_up = np.log2(patch_size)
self.temporal_max_up = np.log2(temporal_patch_size)
self.temporal_up_offset = self.max_up - self.temporal_max_up
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.ffactor = 2 ** (self.num_resolutions - 1)
self.cnn_param = cnn_param
self.use_checkpoint = use_checkpoint
self.use_freq_dec = use_freq_dec
self.use_pxsf = use_pxsf
# compute in_ch_mult, block_in and curr_res at lowest res
block_in = ch * ch_mult[self.num_resolutions - 1]
# z to block_in
if cnn_param["conv_inner_2d"] == "yes":
self.conv_in = Conv(z_channels, block_in, kernel_size=3, stride=1, padding=1, cnn_type="2d")
else:
self.conv_in = Conv(z_channels, block_in, kernel_size=3, stride=1, padding=1, cnn_type=cnn_param["cnn_type"])
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, norm_type=norm_type, cnn_param=cnn_param)
if cnn_param["cnn_attention"] == "yes":
self.mid.attn_1 = AttnBlock(block_in, norm_type=norm_type, cnn_param=cnn_param)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, norm_type=norm_type, cnn_param=cnn_param)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks + 1):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, norm_type=norm_type, cnn_param=cnn_param))
block_in = block_out
up = nn.Module()
up.block = block
up.attn = attn
# upsample, stride=1, stride=2, stride=2 for 4x8x8 Video VAE, offset 1 compared with encoder
# https://github.com/black-forest-labs/flux/blob/b4f689aaccd40de93429865793e84a734f4a6254/src/flux/modules/autoencoder.py#L228
spatial_up = True if 1 <= i_level <= self.max_up else False
temporal_up = True if 1 <= i_level <= self.max_up and i_level >= self.temporal_up_offset+1 else False
if spatial_up or temporal_up:
up.upsample = Upsample(block_in, cnn_type=cnn_param["cnn_type"], spatial_up=spatial_up, temporal_up=temporal_up, use_pxsl=self.use_pxsf)
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Normalize(block_in, norm_type, norm_axis=cnn_param["cnn_norm_axis"])
if cnn_param["conv_in_out_2d"] == "yes":
self.conv_out = Conv(block_in, out_ch, kernel_size=3, stride=1, padding=1, cnn_type="2d")
else:
self.conv_out = Conv(block_in, out_ch, kernel_size=3, stride=1, padding=1, cnn_type=cnn_param["cnn_type"])
def forward(self, z):
if not self.use_checkpoint:
return self._forward(z)
else:
return checkpoint.checkpoint(self._forward, z, use_reentrant=False)
def _forward(self, z: Tensor) -> Tensor:
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid.block_1(h)
if self.cnn_param["cnn_attention"] == "yes":
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if hasattr(self.up[i_level], "upsample"):
h = self.up[i_level].upsample(h)
# end
h = self.norm_out(h)
h = swish(h)
h = self.conv_out(h)
return h
class AutoEncoder(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
cnn_param = dict(
cnn_type=args.cnn_type,
conv_in_out_2d=args.conv_in_out_2d,
res_conv_2d=args.res_conv_2d,
cnn_attention=args.cnn_attention,
cnn_norm_axis=args.cnn_norm_axis,
conv_inner_2d=args.conv_inner_2d,
)
self.encoder = Encoder(
ch=args.base_ch,
ch_mult=args.encoder_ch_mult,
num_res_blocks=args.num_res_blocks,
z_channels=args.codebook_dim,
patch_size=args.patch_size,
temporal_patch_size=args.temporal_patch_size,
cnn_param=cnn_param,
use_checkpoint=args.use_checkpoint,
use_vae=args.use_vae,
)
self.decoder = Decoder(
ch=args.base_ch,
ch_mult=args.decoder_ch_mult,
num_res_blocks=args.num_res_blocks,
z_channels=args.codebook_dim,
patch_size=args.patch_size,
temporal_patch_size=args.temporal_patch_size,
cnn_param=cnn_param,
use_checkpoint=args.use_checkpoint,
use_freq_dec=args.use_freq_dec,
use_pxsf=args.use_pxsf # pixelshuffle for upsampling
)
self.z_drop = nn.Dropout(args.z_drop)
self.scale_factor = 0.3611
self.shift_factor = 0.1159
self.codebook_dim = self.embed_dim = args.codebook_dim
self.gan_feat_weight = args.gan_feat_weight
self.video_perceptual_weight = args.video_perceptual_weight
self.recon_loss_type = args.recon_loss_type
self.l1_weight = args.l1_weight
self.use_vae = args.use_vae
self.kl_weight = args.kl_weight
self.lfq_weight = args.lfq_weight
self.image_gan_weight = args.image_gan_weight # image GAN loss weight
self.video_gan_weight = args.video_gan_weight # video GAN loss weight
self.perceptual_weight = args.perceptual_weight
self.flux_weight = args.flux_weight
self.cycle_weight = args.cycle_weight
self.cycle_feat_weight = args.cycle_feat_weight
self.cycle_gan_weight = args.cycle_gan_weight
self.flux_image_encoder = None
if not args.use_vae:
if args.quantizer_type == 'MultiScaleBSQ':
self.quantizer = MultiScaleBSQ(
dim = args.codebook_dim, # this is the input feature dimension, defaults to log2(codebook_size) if not defined
codebook_size = args.codebook_size, # codebook size, must be a power of 2
entropy_loss_weight = args.entropy_loss_weight, # how much weight to place on entropy loss
diversity_gamma = args.diversity_gamma, # within entropy loss, how much weight to give to diversity of codes, taken from https://arxiv.org/abs/1911.05894
preserve_norm=args.preserve_norm, # preserve norm of the input for BSQ
ln_before_quant=args.ln_before_quant, # use layer norm before quantization
ln_init_by_sqrt=args.ln_init_by_sqrt, # layer norm init value 1/sqrt(d)
commitment_loss_weight=args.commitment_loss_weight, # loss weight of commitment loss
new_quant=args.new_quant,
use_decay_factor=args.use_decay_factor,
mask_out=args.mask_out,
use_stochastic_depth=args.use_stochastic_depth,
drop_rate=args.drop_rate,
schedule_mode=args.schedule_mode,
keep_first_quant=args.keep_first_quant,
keep_last_quant=args.keep_last_quant,
remove_residual_detach=args.remove_residual_detach,
use_out_phi=args.use_out_phi,
use_out_phi_res=args.use_out_phi_res,
random_flip = args.random_flip,
flip_prob = args.flip_prob,
flip_mode = args.flip_mode,
max_flip_lvl = args.max_flip_lvl,
random_flip_1lvl = args.random_flip_1lvl,
flip_lvl_idx = args.flip_lvl_idx,
drop_when_test = args.drop_when_test,
drop_lvl_idx = args.drop_lvl_idx,
drop_lvl_num = args.drop_lvl_num,
)
self.quantize = self.quantizer
self.vocab_size = args.codebook_size
else:
raise NotImplementedError(f"{args.quantizer_type} not supported")
def forward(self, x):
is_image = x.ndim == 4
if not is_image:
B, C, T, H, W = x.shape
else:
B, C, H, W = x.shape
T = 1
enc_dtype = ptdtype[self.args.encoder_dtype]
with torch.amp.autocast("cuda", dtype=enc_dtype):
h, hs, hs_mid = self.encoder(x, return_hidden=True) # B C H W or B C T H W
hs = [_h.detach() for _h in hs]
hs_mid = [_h.detach() for _h in hs_mid]
h = h.to(dtype=torch.float32)
# print(z.shape)
# Multiscale LFQ
z, all_indices, all_loss = self.quantizer(h)
x_recon = self.decoder(z)
vq_output = {
"commitment_loss": torch.mean(all_loss) * self.lfq_weight, # here commitment loss is sum of commitment loss and entropy penalty
"encodings": all_indices,
}
return x_recon, vq_output
def encode_for_raw_features(self, x, scale_schedule, return_residual_norm_per_scale=False):
is_image = x.ndim == 4
if not is_image:
B, C, T, H, W = x.shape
else:
B, C, H, W = x.shape
T = 1
enc_dtype = ptdtype[self.args.encoder_dtype]
with torch.amp.autocast("cuda", dtype=enc_dtype):
h, hs, hs_mid = self.encoder(x, return_hidden=True) # B C H W or B C T H W
hs = [_h.detach() for _h in hs]
hs_mid = [_h.detach() for _h in hs_mid]
h = h.to(dtype=torch.float32)
return h, hs, hs_mid
def encode(self, x, scale_schedule, return_residual_norm_per_scale=False):
h, hs, hs_mid = self.encode_for_raw_features(x, scale_schedule, return_residual_norm_per_scale)
# Multiscale LFQ
z, all_indices, all_bit_indices, residual_norm_per_scale, all_loss, var_input = self.quantizer(h, scale_schedule=scale_schedule, return_residual_norm_per_scale=return_residual_norm_per_scale)
return h, z, all_indices, all_bit_indices, residual_norm_per_scale, var_input
def decode(self, z):
x_recon = self.decoder(z)
x_recon = torch.clamp(x_recon, min=-1, max=1)
return x_recon
def decode_from_indices(self, all_indices, scale_schedule, label_type):
summed_codes = 0
for idx_Bl in all_indices:
codes = self.quantizer.lfq.indices_to_codes(idx_Bl, label_type)
summed_codes += F.interpolate(codes, size=scale_schedule[-1], mode=self.quantizer.z_interplote_up)
assert summed_codes.shape[-3] == 1
x_recon = self.decoder(summed_codes.squeeze(-3))
x_recon = torch.clamp(x_recon, min=-1, max=1)
return summed_codes, x_recon
@staticmethod
def add_model_specific_args(parent_parser):
parser = argparse.ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument("--flux_weight", type=float, default=0)
parser.add_argument("--cycle_weight", type=float, default=0)
parser.add_argument("--cycle_feat_weight", type=float, default=0)
parser.add_argument("--cycle_gan_weight", type=float, default=0)
parser.add_argument("--cycle_loop", type=int, default=0)
parser.add_argument("--z_drop", type=float, default=0.)
return parser