File size: 43,698 Bytes
32287b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd9b6e5
 
 
 
 
 
32287b3
 
bd9b6e5
32287b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
"""
Definition of Infinity transformer model.
"""

import math
import random
import time
from contextlib import nullcontext
from functools import partial
from typing import List, Optional, Tuple, Union, Dict, Any

import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models import register_model
from torch.utils.checkpoint import checkpoint
from PIL import Image
import numpy as np
from torch.nn.attention.flex_attention import flex_attention

import utils.dist as dist
from utils.dist import for_visualize
from models.basic import flash_attn_func, flash_fused_op_installed, AdaLNBeforeHead, CrossAttnBlock, SelfAttnBlock, CrossAttention, FastRMSNorm, precompute_rope2d_freqs_grid
from utils import misc
from models.flex_attn import FlexAttn
from utils.dynamic_resolution import dynamic_resolution_h_w, h_div_w_templates

try:
    from models.fused_op import fused_ada_layer_norm, fused_ada_rms_norm
except:
    fused_ada_layer_norm, fused_ada_rms_norm = None, None


class MultiInpIdentity(nn.Module):
    def forward(self, x, *args, **kwargs):
        return x


class TextAttentivePool(nn.Module):
    def __init__(self, Ct5: int, D: int):
        super().__init__()
        self.Ct5, self.D = Ct5, D
        if D > 4096:
            self.head_dim = 64 
        else:
            self.head_dim = 128

        self.num_heads = Ct5 // self.head_dim
        self.ca = CrossAttention(for_attn_pool=True, embed_dim=self.D, kv_dim=Ct5, num_heads=self.num_heads)
    def forward(self, ca_kv):
        return self.ca(None, ca_kv).squeeze(1)

class SharedAdaLin(nn.Linear):
    def forward(self, cond_BD):
        C = self.weight.shape[0] // 6
        return super().forward(cond_BD).reshape(-1, 1, 6, C)   # B16C


class MultipleLayers(nn.Module):
    def __init__(self, ls, num_blocks_in_a_chunk, index):
        super().__init__()
        self.module = nn.ModuleList()
        for i in range(index, index+num_blocks_in_a_chunk):
            self.module.append(ls[i])

    def forward(self, x, cond_BD, ca_kv, attn_bias_or_two_vector, attn_fn=None, scale_schedule=None, checkpointing_full_block=False, rope2d_freqs_grid=None):
        h = x
        for m in self.module:
            if checkpointing_full_block:
                h = torch.utils.checkpoint.checkpoint(m, h, cond_BD, ca_kv, attn_bias_or_two_vector, attn_fn, scale_schedule, rope2d_freqs_grid, use_reentrant=False)
            else:
                h = m(h, cond_BD, ca_kv, attn_bias_or_two_vector, attn_fn, scale_schedule, rope2d_freqs_grid)
        return h

class Infinity(nn.Module):
    def __init__(
        self, vae_local,
        text_channels=0, text_maxlen=0,     # text-cond generation
        selecting_idx=None,                 # class-cond generation
        embed_dim=1024, depth=16, num_heads=16, mlp_ratio=4.,   # model's architecture
        drop_rate=0., drop_path_rate=0.,    # drop out and drop path
        norm_eps=1e-6, rms_norm=False,      # norm layer
        shared_aln=False, head_aln=True,    # adaptive norm
        cond_drop_rate=0.1,                 # for classifier-free guidance
        rand_uncond=False,
        cross_attn_layer_scale=-1., nm0=False, tau=1, cos_attn=True, swiglu=False,
        raw_scale_schedule=(1, 2, 3, 4, 5, 6, 8, 10, 13, 16),
        head_depth=1,
        top_p=0.0, top_k=0.0,
        customized_flash_attn=False, fused_mlp=False, fused_norm=False,
        block_chunks=1,
        checkpointing=None,
        pad_to_multiplier=0,
        use_flex_attn=False,
        batch_size=2,
        add_lvl_embeding_only_first_block=1,
        use_bit_label=1,
        rope2d_each_sa_layer=0,
        rope2d_normalized_by_hw=0,
        pn=None,
        train_h_div_w_list=None,
        video_frames=1,
        always_training_scales=20,
        apply_spatial_patchify = 0,
        inference_mode=False,
    ):
        # set hyperparameters
        self.C = embed_dim
        self.inference_mode = inference_mode
        self.apply_spatial_patchify = apply_spatial_patchify
        if self.apply_spatial_patchify:
            self.d_vae = vae_local.embed_dim * 4
        else:
            self.d_vae = vae_local.embed_dim
        self.use_bit_label = use_bit_label
        self.codebook_dim = self.d_vae
        self.V = (self.codebook_dim * 2) if self.use_bit_label else vae_local.vocab_size
        self.bit_mask = vae_local.quantizer.lfq.mask if self.use_bit_label else None
        self.Ct5 = text_channels
        self.depth = depth
        self.num_heads = num_heads
        self.batch_size = batch_size
        self.mlp_ratio = mlp_ratio
        self.cond_drop_rate = cond_drop_rate
        self.norm_eps = norm_eps
        self.prog_si = -1
        self.pn = pn
        self.train_h_div_w_list = train_h_div_w_list if train_h_div_w_list else h_div_w_templates
        self.video_frames = video_frames
        self.always_training_scales = always_training_scales

        assert add_lvl_embeding_only_first_block in [0,1]
        self.add_lvl_embeding_only_first_block = add_lvl_embeding_only_first_block
        assert rope2d_each_sa_layer in [0,1]
        self.rope2d_each_sa_layer = rope2d_each_sa_layer
        self.rope2d_normalized_by_hw = rope2d_normalized_by_hw
        print(f'self.codebook_dim: {self.codebook_dim}, self.add_lvl_embeding_only_first_block: {self.add_lvl_embeding_only_first_block}, \
            self.use_bit_label: {self.use_bit_label}, self.rope2d_each_sa_layer: {rope2d_each_sa_layer}, self.rope2d_normalized_by_hw: {self.rope2d_normalized_by_hw}')
        head_up_method = ''
        word_patch_size = 1 if head_up_method in {'', 'no'} else 2
        if word_patch_size > 1:
            assert all(raw_pn % word_patch_size == 0 for raw_pn in raw_scale_schedule), f'raw_scale_schedule={raw_scale_schedule}, not compatible with word_patch_size={word_patch_size}'
        
        self.checkpointing = checkpointing
        self.pad_to_multiplier = max(1, pad_to_multiplier)
        
        customized_kernel_installed = any('Infinity' in arg_name for arg_name in flash_attn_func.__code__.co_varnames)
        self.customized_flash_attn = customized_flash_attn and customized_kernel_installed
        if customized_flash_attn and not customized_kernel_installed:
            import inspect, warnings
            file_path = inspect.getsourcefile(flash_attn_func)
            line_number = inspect.getsourcelines(flash_attn_func)[1]
            info = (
                f'>>>>>> Customized FlashAttention2 is not installed or compiled, but specified in args by --flash=1. Set customized_flash_attn = False. <<<<<<\n'
                f'>>>>>> `flash_attn_func` is in [line {line_number}] [file {file_path}] <<<<<<\n'
                f'>>>>>> {flash_attn_func.__code__.co_varnames=} <<<<<<\n'
            )
            warnings.warn(info, ImportWarning)
            print(info, flush=True)
        
        self.raw_scale_schedule = raw_scale_schedule    # 'raw' means before any patchifying
        self.first_l = 1
        # solve top-p top-k sampling hyperparameters
        self.top_p, self.top_k = max(min(top_p, 1), 0), (round(top_k * self.V) if 0 < top_k < 1 else round(top_k))
        if self.top_p < 1e-5: self.top_p = 0
        if self.top_k >= self.V or self.top_k <= 0: self.top_k = 0
        
        t = torch.zeros(dist.get_world_size(), device=dist.get_device())
        t[dist.get_rank()] = float(flash_fused_op_installed)
        dist.barrier()
        dist.allreduce(t)
        assert round(t.sum().item()) in {0, dist.get_world_size()}, f'flash_fused_op_installed: {t}'
        
        super().__init__()
        self.rng = torch.Generator(device=dist.get_device())
        self.maybe_record_function = nullcontext
        self.text_maxlen = text_maxlen
        self.t2i = text_channels != 0
        
        # [inp & position embedding]
        init_std = math.sqrt(1 / self.C / 3)
        self.norm0_cond = nn.Identity()
        if self.t2i:
            self.selecting_idx = None
            self.num_classes = 0
            self.D = self.C
            
            cfg_uncond = torch.empty(self.text_maxlen, self.Ct5)
            rng = torch.Generator(device='cpu')
            rng.manual_seed(0)
            torch.nn.init.trunc_normal_(cfg_uncond, std=1.2, generator=rng)
            cfg_uncond /= self.Ct5 ** 0.5
            if rand_uncond:
                self.register_buffer('cfg_uncond', cfg_uncond)
            else:
                self.cfg_uncond = nn.Parameter(cfg_uncond)
            
            self.text_norm = FastRMSNorm(self.Ct5, elementwise_affine=True, eps=norm_eps)
            self.text_proj_for_sos = TextAttentivePool(self.Ct5, self.D)
            self.text_proj_for_ca = nn.Sequential(
                nn.Linear(self.Ct5, self.D),
                nn.GELU(approximate='tanh'),
                nn.Linear(self.D, self.D),
            )
        else:   # class-label cond
            if selecting_idx is None:
                num_classes = 1000
                print(f'======= WARNING: selecting_idx not specified, set to 1/{num_classes} @ {dist.get_device()} =======')
                selecting_idx = torch.full((1, num_classes), fill_value=1/num_classes, dtype=torch.float32, device=dist.get_device())
            self.selecting_idx = selecting_idx
            self.num_classes = selecting_idx.shape[-1]
            self.D = self.C
            self.class_emb = nn.Embedding(self.num_classes + 1, self.C)
            nn.init.trunc_normal_(self.class_emb.weight.data, mean=0, std=init_std)
        
        self.pos_start = nn.Parameter(torch.empty(1, self.first_l, self.C))
        nn.init.trunc_normal_(self.pos_start.data, mean=0, std=init_std)
        if self.rope2d_each_sa_layer:
            rope2d_freqs_grid = precompute_rope2d_freqs_grid(dim=self.C//self.num_heads, dynamic_resolution_h_w=dynamic_resolution_h_w, pad_to_multiplier=self.pad_to_multiplier, rope2d_normalized_by_hw=self.rope2d_normalized_by_hw)
            self.rope2d_freqs_grid = rope2d_freqs_grid
        else:
            raise ValueError(f'self.rope2d_each_sa_layer={self.rope2d_each_sa_layer} not implemented')
        self.lvl_embed = nn.Embedding(15, self.C)
        nn.init.trunc_normal_(self.lvl_embed.weight.data, mean=0, std=init_std)
        
        # [input layers] input norm && input embedding
        norm_layer = partial(FastRMSNorm if rms_norm else nn.LayerNorm, eps=norm_eps)
        self.norm0_ve = norm_layer(self.d_vae) if nm0 else nn.Identity()
        self.word_embed = nn.Linear(self.d_vae, self.C)
        
        # [shared adaptive layernorm mapping network]
        self.shared_ada_lin = nn.Sequential(nn.SiLU(inplace=False), SharedAdaLin(self.D, 6*self.C)) if shared_aln else nn.Identity()
        
        # fused norm
        if fused_norm:
            fused_norm_func = fused_ada_rms_norm if rms_norm else fused_ada_layer_norm
            if fused_norm_func is not None: # pre-compile
                B = 2
                x = torch.randn(B, 1, self.C).requires_grad_(True)
                scale = torch.randn(B, 1, self.C).mul_(0.01).requires_grad_(True)
                shift = torch.randn(B, 1, self.C).mul_(0.01).requires_grad_(True)
                # fused_norm_func(C=self.C, eps=self.norm_eps, x=x, scale=scale, shift=shift).mean().backward()
                del B, x, scale, shift
        else:
            fused_norm_func = None
        
        # [backbone and head]
        self.use_flex_attn = use_flex_attn
        self.attn_fn_compile_dict = {}
        self.batch_size = batch_size
        if self.use_flex_attn:
            self.attn_fn_compile_dict = self.compile_flex_attn()

        self.drop_path_rate = drop_path_rate
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # dpr means drop path rate (linearly increasing)
        self.unregistered_blocks = []
        for block_idx in range(depth):
            block = (CrossAttnBlock if self.t2i else SelfAttnBlock)(
                embed_dim=self.C, kv_dim=self.D, cross_attn_layer_scale=cross_attn_layer_scale, cond_dim=self.D, act=True, shared_aln=shared_aln, norm_layer=norm_layer,
                num_heads=num_heads, mlp_ratio=mlp_ratio, drop=drop_rate, drop_path=dpr[block_idx], tau=tau, cos_attn=cos_attn,
                swiglu=swiglu, customized_flash_attn=self.customized_flash_attn, fused_mlp=fused_mlp, fused_norm_func=fused_norm_func,
                checkpointing_sa_only=self.checkpointing == 'self-attn',
                use_flex_attn=use_flex_attn, batch_size=batch_size, pad_to_multiplier=pad_to_multiplier, rope2d_normalized_by_hw=rope2d_normalized_by_hw,
            )
            self.unregistered_blocks.append(block)
        
        # [head]
        V = self.V
        if head_aln:
            self.head_nm = AdaLNBeforeHead(self.C, self.D, act=True, norm_layer=norm_layer, fused_norm_func=fused_norm_func)
            self.head = nn.Linear(self.C, V) if head_depth == 1 else nn.Sequential(nn.Linear(self.C, self.C, bias=True), nn.GELU(approximate='tanh'), nn.Linear(self.C, V))
        else:
            self.head_nm = MultiInpIdentity()
            self.head = nn.Sequential(norm_layer(self.C), nn.Linear(self.C, V)) if head_depth == 1 else nn.Sequential(norm_layer(self.C), nn.Linear(self.C, self.C, bias=True), nn.GELU(approximate='tanh'), nn.Linear(self.C, V))
        
        self.num_block_chunks = block_chunks or 1
        self.num_blocks_in_a_chunk = depth // block_chunks
        print(f"{self.num_blocks_in_a_chunk=}, {depth=}, {block_chunks=}")
        assert self.num_blocks_in_a_chunk * block_chunks == depth
        if self.num_block_chunks == 1:
            self.blocks = nn.ModuleList(self.unregistered_blocks)
        else:
            self.block_chunks = nn.ModuleList()
            for i in range(self.num_block_chunks):
                self.block_chunks.append(MultipleLayers(self.unregistered_blocks, self.num_blocks_in_a_chunk, i*self.num_blocks_in_a_chunk))
        print(
            f'\n[constructor]  ==== customized_flash_attn={self.customized_flash_attn} (using_flash={sum((b.sa.using_flash if self.t2i else b.attn.using_flash) for b in self.unregistered_blocks)}/{self.depth}), fused_mlp={fused_mlp} (fused_mlp={sum(b.ffn.fused_mlp_func is not None for b in self.unregistered_blocks)}/{self.depth}) ==== \n'
            f'    [Infinity config ] embed_dim={embed_dim}, num_heads={num_heads}, depth={depth}, mlp_ratio={mlp_ratio}, swiglu={swiglu} num_blocks_in_a_chunk={self.num_blocks_in_a_chunk}\n'
            f'    [drop ratios] drop_rate={drop_rate}, drop_path_rate={drop_path_rate:g} ({torch.linspace(0, drop_path_rate, depth)})',
            end='\n\n', flush=True
        )
    

    def compile_flex_attn(self):
        attn_fn_compile_dict = {}
        for h_div_w in self.train_h_div_w_list:
            h_div_w_template = h_div_w_templates[np.argmin(np.abs(float(h_div_w) - h_div_w_templates))]
            full_scale_schedule = dynamic_resolution_h_w[h_div_w_template][self.pn]['scales']
            if self.inference_mode:
                apply_flex_attn_scales = list(range(1, 1+len(full_scale_schedule)))
                mask_type = "infinity_infer_mask_with_kv_cache"
                auto_padding = True
            else:
                mask_type = 'var'
                auto_padding = False
                apply_flex_attn_scales = [min(self.always_training_scales, len(full_scale_schedule))]
            for scales_num in apply_flex_attn_scales:
                print(f'====== apply flex attn hdivw: {h_div_w} scales: {scales_num} ======')
                scale_schedule = full_scale_schedule[:scales_num]
                scale_schedule = [ (min(t, self.video_frames//4+1), h, w) for (t,h, w) in scale_schedule]
                patchs_nums_tuple = tuple(scale_schedule)
                SEQ_L = sum( pt * ph * pw for pt, ph, pw in patchs_nums_tuple)
                aligned_L = SEQ_L+ (self.pad_to_multiplier - SEQ_L % self.pad_to_multiplier) if SEQ_L % self.pad_to_multiplier != 0 else SEQ_L
                attn_fn = FlexAttn(block_scales = patchs_nums_tuple,
                                        mask_type = mask_type,
                                        B = self.batch_size, 
                                        H = self.num_heads,
                                        L = aligned_L,
                                        auto_padding=auto_padding)
                attn_fn_compile_dict[patchs_nums_tuple] = attn_fn

            if self.video_frames > 1: # append image attn_fn when self.video_frames > 1 (namely videos)
                scale_schedule = [ (1, h, w) for (t,h, w) in scale_schedule]
                patchs_nums_tuple = tuple(scale_schedule)
                SEQ_L = sum( pt * ph * pw for pt, ph, pw in patchs_nums_tuple)
                aligned_L = SEQ_L+ (self.pad_to_multiplier - SEQ_L % self.pad_to_multiplier) if SEQ_L % self.pad_to_multiplier != 0 else SEQ_L
                attn_fn = FlexAttn(block_scales = patchs_nums_tuple,
                                        mask_type = mask_type,
                                        B = self.batch_size, 
                                        H = self.num_heads,
                                        L = aligned_L)
                attn_fn_compile_dict[patchs_nums_tuple] = attn_fn
        return attn_fn_compile_dict
        
    def get_logits(self, h: torch.Tensor, cond_BD: Optional[torch.Tensor]):
        """
        :param h: hidden_state, shaped (B or batch_size, L or seq_len, C or hidden_dim)
        :param cond_BD: shaped (B or batch_size, D or cond_dim)
        :param tau: temperature
        :return: logits, shaped (B or batch_size, V or vocabulary_size)
        """
        with torch.amp.autocast('cuda', enabled=False):
            return self.head(self.head_nm(h.float(), cond_BD.float()))

    def add_lvl_embeding(self, feature, scale_ind, scale_schedule, need_to_pad=0):
        bs, seq_len, c = feature.shape
        patch_t, patch_h, patch_w = scale_schedule[scale_ind]
        t_mul_h_mul_w = patch_t * patch_h * patch_w
        assert t_mul_h_mul_w + need_to_pad == seq_len
        feature[:, :t_mul_h_mul_w] += self.lvl_embed(scale_ind*torch.ones((bs, t_mul_h_mul_w),dtype=torch.int).to(feature.device))
        return feature
    
    def add_lvl_embeding_for_x_BLC(self, x_BLC, scale_schedule, need_to_pad=0):
        ptr = 0
        x_BLC_list = []
        for scale_ind, patch_t_h_w in enumerate(scale_schedule):
            scale_seq_len = np.array(patch_t_h_w).prod()
            x_BLC_this_scale = x_BLC[:,ptr:ptr+scale_seq_len] # shape: [bs, patch_h*patch_w, c]
            ptr += scale_seq_len
            x_BLC_this_scale = self.add_lvl_embeding(x_BLC_this_scale, scale_ind, scale_schedule)
            x_BLC_list.append(x_BLC_this_scale)
        assert x_BLC.shape[1] == (ptr + need_to_pad), f'{x_BLC.shape[1]} != {ptr} + {need_to_pad}'
        x_BLC_list.append(x_BLC[:,ptr:])
        x_BLC = torch.cat(x_BLC_list, dim=1)
        return x_BLC

    def forward(self, label_B_or_BLT: Union[torch.LongTensor, Tuple[torch.FloatTensor, torch.IntTensor, int]], x_BLC_wo_prefix: torch.Tensor, scale_schedule: List[Tuple[int]],
        cfg_infer=False,
        **kwargs,
    ) -> Union[torch.Tensor, List[torch.Tensor]]:  # returns logits_BLV
        """
        label_B_or_BLT: label_B or (kv_compact, cu_seqlens_k, max_seqlen_k)
        :return: logits BLV, V is vocab_size
        """
        if cfg_infer:
            return self.autoregressive_infer_cfg(label_B_or_BLT=label_B_or_BLT, scale_schedule=scale_schedule, **kwargs)
        
        x_BLC_wo_prefix = x_BLC_wo_prefix.float()       # input should be float32
        B = x_BLC_wo_prefix.shape[0]

        # [1. get input sequence x_BLC]
        with torch.amp.autocast('cuda', enabled=False):
            kv_compact, lens, cu_seqlens_k, max_seqlen_k = label_B_or_BLT
            # drop cond
            total = 0
            for le in lens:
                if random.random() < self.cond_drop_rate:
                    kv_compact[total:total+le] = self.cfg_uncond[:le]
                total += le
            must_on_graph = self.cfg_uncond[0, 0] * 0
            kv_compact = self.text_norm(kv_compact).contiguous()
            sos = cond_BD = self.text_proj_for_sos((kv_compact, cu_seqlens_k, max_seqlen_k)).float().contiguous()    # cond_BD should be float32
            kv_compact = self.text_proj_for_ca(kv_compact).contiguous()
            kv_compact[0, 0] += must_on_graph
            ca_kv = kv_compact, cu_seqlens_k, max_seqlen_k
            
            cond_BD_or_gss = self.shared_ada_lin(cond_BD).contiguous()  # gss: gamma, scale, shift; cond_BD_or_gss should be float32
            
            sos = sos.unsqueeze(1).expand(B, 1, -1) + self.pos_start.expand(B, 1, -1)
            x_BLC = torch.cat((sos, self.word_embed(self.norm0_ve(x_BLC_wo_prefix))), dim=1)

            # [1.1. pad the seqlen dim]
            l_end = x_BLC.shape[1]
            need_to_pad = (l_end + self.pad_to_multiplier - 1) // self.pad_to_multiplier * self.pad_to_multiplier - l_end # 0
            
            if self.customized_flash_attn:
                Infinity_visible_kvlen = self.Infinity_visible_kvlen[:l_end]
                Infinity_invisible_qlen = self.Infinity_invisible_qlen[:l_end]
                attn_bias_or_two_vector = (Infinity_visible_kvlen, Infinity_invisible_qlen)
                # todo: solve need_to_pad here
            elif self.use_flex_attn:
                if need_to_pad:
                    x_BLC = F.pad(x_BLC, (0, 0, 0, need_to_pad))
                assert x_BLC.shape[-1] % 128 == 0, 'x_BLC.shape[-1] % 128 != 0'
                attn_bias_or_two_vector = None
            else:
                d: torch.Tensor = torch.cat([torch.full((pn[0]*pn[1]*pn[2],), i) for i, pn in enumerate(scale_schedule)]).view(1, l_end, 1)
                dT = d.transpose(1, 2)    # dT: 11L
                attn_bias_for_masking = torch.where(d >= dT, 0., -torch.inf).reshape(1, 1, l_end, l_end)
                attn_bias = attn_bias_for_masking[:, :, :l_end, :l_end].contiguous()   # attn_bias: 11LL
                if need_to_pad:
                    attn_bias = F.pad(attn_bias, (0, need_to_pad, 0, need_to_pad), value=-torch.inf)
                    attn_bias[0, 0, l_end:, 0] = 0
                    x_BLC = F.pad(x_BLC, (0, 0, 0, need_to_pad))
                attn_bias_or_two_vector = attn_bias.type_as(x_BLC).to(x_BLC.device)
        
        if self.use_flex_attn:
            attn_fn = self.attn_fn_compile_dict[tuple(scale_schedule)]
        else:
            attn_fn = None

        # [2. block loop]
        SelfAttnBlock.forward, CrossAttnBlock.forward
        checkpointing_full_block = self.checkpointing == 'full-block' and self.training
        if self.num_block_chunks == 1:
            for i, b in enumerate(self.blocks):
                if self.add_lvl_embeding_only_first_block and i == 0:
                    x_BLC = self.add_lvl_embeding_for_x_BLC(x_BLC, scale_schedule, need_to_pad)
                if not self.add_lvl_embeding_only_first_block:
                    x_BLC = self.add_lvl_embeding_for_x_BLC(x_BLC, scale_schedule, need_to_pad)
                if checkpointing_full_block:
                    x_BLC = torch.utils.checkpoint.checkpoint(b, x_BLC, cond_BD_or_gss, ca_kv, attn_bias_or_two_vector, attn_fn, scale_schedule, self.rope2d_freqs_grid, use_reentrant=False)
                else:
                    x_BLC = b(x=x_BLC, cond_BD=cond_BD_or_gss, ca_kv=ca_kv, attn_bias_or_two_vector=attn_bias_or_two_vector, attn_fn=attn_fn, scale_schedule=scale_schedule, rope2d_freqs_grid=self.rope2d_freqs_grid)
        else:
            for i, chunk in enumerate(self.block_chunks): # this path
                if self.add_lvl_embeding_only_first_block and i == 0:
                    x_BLC = self.add_lvl_embeding_for_x_BLC(x_BLC, scale_schedule, need_to_pad)
                if not self.add_lvl_embeding_only_first_block:
                    x_BLC = self.add_lvl_embeding_for_x_BLC(x_BLC, scale_schedule, need_to_pad)
                x_BLC = chunk(x=x_BLC, cond_BD=cond_BD_or_gss, ca_kv=ca_kv, attn_bias_or_two_vector=attn_bias_or_two_vector, attn_fn=attn_fn, scale_schedule=scale_schedule, checkpointing_full_block=checkpointing_full_block, rope2d_freqs_grid=self.rope2d_freqs_grid)

        # [3. unpad the seqlen dim, and then get logits]
        return self.get_logits(x_BLC[:, :l_end], cond_BD)    # return logits BLV, V is vocab_size

    @torch.no_grad()
    def autoregressive_infer_cfg(
        self,
        vae=None,
        scale_schedule=None,
        label_B_or_BLT=None,
        B=1, negative_label_B_or_BLT=None, force_gt_Bhw=None,
        g_seed=None, cfg_list=[], tau_list=[], cfg_sc=3, top_k=0, top_p=0.0,
        returns_vemb=0, ratio_Bl1=None, gumbel=0, norm_cfg=False,
        cfg_exp_k: float=0.0, cfg_insertion_layer=[-5],
        vae_type=0, softmax_merge_topk=-1, ret_img=False,
        trunk_scale=1000,
        gt_leak=0, gt_ls_Bl=None,
        inference_mode=False,
        save_img_path=None,
        sampling_per_bits=1,
    ):   # returns List[idx_Bl]
        if g_seed is None: rng = None
        else: self.rng.manual_seed(g_seed); rng = self.rng
        assert len(cfg_list) >= len(scale_schedule)
        assert len(tau_list) >= len(scale_schedule)

        # scale_schedule is used by infinity, vae_scale_schedule is used by vae if there exists a spatial patchify, 
        # we need to convert scale_schedule to vae_scale_schedule by multiply 2 to h and w
        if self.apply_spatial_patchify:
            vae_scale_schedule = [(pt, 2*ph, 2*pw) for pt, ph, pw in scale_schedule]
        else:
            vae_scale_schedule = scale_schedule
        
        kv_compact, lens, cu_seqlens_k, max_seqlen_k = label_B_or_BLT
        if any(np.array(cfg_list) != 1):
            bs = 2*B
            if not negative_label_B_or_BLT:
                kv_compact_un = kv_compact.clone()
                total = 0
                for le in lens:
                    kv_compact_un[total:total+le] = (self.cfg_uncond)[:le]
                    total += le
                kv_compact = torch.cat((kv_compact, kv_compact_un), dim=0)
                cu_seqlens_k = torch.cat((cu_seqlens_k, cu_seqlens_k[1:]+cu_seqlens_k[-1]), dim=0)
            else:
                kv_compact_un, lens_un, cu_seqlens_k_un, max_seqlen_k_un = negative_label_B_or_BLT
                kv_compact = torch.cat((kv_compact, kv_compact_un), dim=0)
                cu_seqlens_k = torch.cat((cu_seqlens_k, cu_seqlens_k_un[1:]+cu_seqlens_k[-1]), dim=0)
                max_seqlen_k = max(max_seqlen_k, max_seqlen_k_un)
        else:
            bs = B

        kv_compact = self.text_norm(kv_compact)
        sos = cond_BD = self.text_proj_for_sos((kv_compact, cu_seqlens_k, max_seqlen_k)) # sos shape: [2, 4096]
        kv_compact = self.text_proj_for_ca(kv_compact) # kv_compact shape: [304, 4096]
        ca_kv = kv_compact, cu_seqlens_k, max_seqlen_k
        last_stage = sos.unsqueeze(1).expand(bs, 1, -1) + self.pos_start.expand(bs, 1, -1)

        with torch.amp.autocast('cuda', enabled=False):
            cond_BD_or_gss = self.shared_ada_lin(cond_BD.float()).float().contiguous()
        accu_BChw, cur_L, ret = None, 0, []  # current length, list of reconstructed images
        idx_Bl_list, idx_Bld_list = [], []

        if inference_mode:
            for b in self.unregistered_blocks: (b.sa if isinstance(b, CrossAttnBlock) else b.attn).kv_caching(True)
        else:
            assert self.num_block_chunks > 1
            for block_chunk_ in self.block_chunks:
                for module in block_chunk_.module.module:
                    (module.sa if isinstance(module, CrossAttnBlock) else module.attn).kv_caching(True)
        
        abs_cfg_insertion_layers = []
        add_cfg_on_logits, add_cfg_on_probs = False, False
        leng = len(self.unregistered_blocks)
        for item in cfg_insertion_layer:
            if item == 0: # add cfg on logits
                add_cfg_on_logits = True
            elif item == 1: # add cfg on probs
                add_cfg_on_probs = True # todo in the future, we may want to add cfg on logits and probs
            elif item < 0: # determine to add cfg at item-th layer's output
                assert leng+item > 0, f'cfg_insertion_layer: {item} is not valid since len(unregistered_blocks)={self.num_block_chunks}'
                abs_cfg_insertion_layers.append(leng+item)
            else:
                raise ValueError(f'cfg_insertion_layer: {item} is not valid')
        
        num_stages_minus_1 = len(scale_schedule)-1
        summed_codes = 0
        for si, pn in enumerate(scale_schedule):   # si: i-th segment
            cfg = cfg_list[si]
            if si >= trunk_scale:
                break
            cur_L += np.array(pn).prod()

            need_to_pad = 0
            attn_fn = None
            if self.use_flex_attn:
                # need_to_pad = (self.pad_to_multiplier - cur_L % self.pad_to_multiplier) % self.pad_to_multiplier
                # if need_to_pad:
                #     last_stage = F.pad(last_stage, (0, 0, 0, need_to_pad))
                attn_fn = self.attn_fn_compile_dict.get(tuple(scale_schedule[:(si+1)]), None)

            # assert self.attn_bias_for_masking[:, :, last_L:cur_L, :cur_L].sum() == 0, f'AR with {(self.attn_bias_for_masking[:, :, last_L:cur_L, :cur_L] != 0).sum()} / {self.attn_bias_for_masking[:, :, last_L:cur_L, :cur_L].numel()} mask item'
            layer_idx = 0
            for block_idx, b in enumerate(self.block_chunks):
                # last_stage shape: [4, 1, 2048], cond_BD_or_gss.shape: [4, 1, 6, 2048], ca_kv[0].shape: [64, 2048], ca_kv[1].shape [5], ca_kv[2]: int
                if self.add_lvl_embeding_only_first_block and block_idx == 0:
                    last_stage = self.add_lvl_embeding(last_stage, si, scale_schedule, need_to_pad=need_to_pad)
                if not self.add_lvl_embeding_only_first_block: 
                    last_stage = self.add_lvl_embeding(last_stage, si, scale_schedule, need_to_pad=need_to_pad)
                
                for m in b.module:
                    last_stage = m(x=last_stage, cond_BD=cond_BD_or_gss, ca_kv=ca_kv, attn_bias_or_two_vector=None, attn_fn=attn_fn, scale_schedule=scale_schedule, rope2d_freqs_grid=self.rope2d_freqs_grid, scale_ind=si)
                    if (cfg != 1) and (layer_idx in abs_cfg_insertion_layers):
                        # print(f'add cfg={cfg} on {layer_idx}-th layer output')
                        last_stage = cfg * last_stage[:B] + (1-cfg) * last_stage[B:]
                        last_stage = torch.cat((last_stage, last_stage), 0)
                    layer_idx += 1
            
            if (cfg != 1) and add_cfg_on_logits:
                # print(f'add cfg on add_cfg_on_logits')
                logits_BlV = self.get_logits(last_stage, cond_BD).mul(1/tau_list[si])
                logits_BlV = cfg * logits_BlV[:B] + (1-cfg) * logits_BlV[B:]
            else:
                logits_BlV = self.get_logits(last_stage[:B], cond_BD[:B]).mul(1/tau_list[si])
            
            if self.use_bit_label:
                tmp_bs, tmp_seq_len = logits_BlV.shape[:2]
                logits_BlV = logits_BlV.reshape(tmp_bs, -1, 2)
                idx_Bld = sample_with_top_k_top_p_also_inplace_modifying_logits_(logits_BlV, rng=rng, top_k=top_k or self.top_k, top_p=top_p or self.top_p, num_samples=1)[:, :, 0]
                idx_Bld = idx_Bld.reshape(tmp_bs, tmp_seq_len, -1)
            else:
                idx_Bl = sample_with_top_k_top_p_also_inplace_modifying_logits_(logits_BlV, rng=rng, top_k=top_k or self.top_k, top_p=top_p or self.top_p, num_samples=1)[:, :, 0]
            if vae_type != 0:
                assert returns_vemb
                if si < gt_leak:
                    idx_Bld = gt_ls_Bl[si]
                else:
                    assert pn[0] == 1
                    idx_Bld = idx_Bld.reshape(B, pn[1], pn[2], -1) # shape: [B, h, w, d] or [B, h, w, 4d]
                    if self.apply_spatial_patchify: # unpatchify operation
                        idx_Bld = idx_Bld.permute(0,3,1,2) # [B, 4d, h, w]
                        idx_Bld = torch.nn.functional.pixel_shuffle(idx_Bld, 2) # [B, d, 2h, 2w]
                        idx_Bld = idx_Bld.permute(0,2,3,1) # [B, 2h, 2w, d]
                    idx_Bld = idx_Bld.unsqueeze(1) # [B, 1, h, w, d] or [B, 1, 2h, 2w, d]

                idx_Bld_list.append(idx_Bld)
                codes = vae.quantizer.lfq.indices_to_codes(idx_Bld, label_type='bit_label') # [B, d, 1, h, w] or [B, d, 1, 2h, 2w]
                if si != num_stages_minus_1:
                    summed_codes += F.interpolate(codes, size=vae_scale_schedule[-1], mode=vae.quantizer.z_interplote_up)
                    last_stage = F.interpolate(summed_codes, size=vae_scale_schedule[si+1], mode=vae.quantizer.z_interplote_down) # [B, d, 1, h, w] or [B, d, 1, 2h, 2w]
                    last_stage = last_stage.squeeze(-3) # [B, d, h, w] or [B, d, 2h, 2w]
                    if self.apply_spatial_patchify: # patchify operation
                        last_stage = torch.nn.functional.pixel_unshuffle(last_stage, 2) # [B, 4d, h, w]
                    last_stage = last_stage.reshape(*last_stage.shape[:2], -1) # [B, d, h*w] or [B, 4d, h*w]
                    last_stage = torch.permute(last_stage, [0,2,1]) # [B, h*w, d] or [B, h*w, 4d]
                else:
                    summed_codes += codes
            else:
                if si < gt_leak:
                    idx_Bl = gt_ls_Bl[si]
                h_BChw = self.quant_only_used_in_inference[0].embedding(idx_Bl).float()   # BlC

                # h_BChw = h_BChw.float().transpose_(1, 2).reshape(B, self.d_vae, scale_schedule[si][0], scale_schedule[si][1])
                h_BChw = h_BChw.transpose_(1, 2).reshape(B, self.d_vae, scale_schedule[si][0], scale_schedule[si][1], scale_schedule[si][2])
                ret.append(h_BChw if returns_vemb != 0 else idx_Bl)
                idx_Bl_list.append(idx_Bl)
                if si != num_stages_minus_1:
                    accu_BChw, last_stage = self.quant_only_used_in_inference[0].one_step_fuse(si, num_stages_minus_1+1, accu_BChw, h_BChw, scale_schedule)
            
            if si != num_stages_minus_1:
                last_stage = self.word_embed(self.norm0_ve(last_stage))
                last_stage = last_stage.repeat(bs//B, 1, 1)

        if inference_mode:
            for b in self.unregistered_blocks: (b.sa if isinstance(b, CrossAttnBlock) else b.attn).kv_caching(False)
        else:
            assert self.num_block_chunks > 1
            for block_chunk_ in self.block_chunks:
                for module in block_chunk_.module.module:
                    (module.sa if isinstance(module, CrossAttnBlock) else module.attn).kv_caching(False)

        if not ret_img:
            return ret, idx_Bl_list, []
        
        if vae_type != 0:
            img = vae.decode(summed_codes.squeeze(-3))
        else:
            img = vae.viz_from_ms_h_BChw(ret, scale_schedule=scale_schedule, same_shape=True, last_one=True)

        img = (img + 1) / 2
        img = img.permute(0, 2, 3, 1).mul_(255).to(torch.uint8).flip(dims=(3,))
        return ret, idx_Bl_list, img
    
    @for_visualize
    def vis_key_params(self, ep):
        return
    
    def load_state_dict(self, state_dict: Dict[str, Any], strict=False, assign=False):
        for k in state_dict:
            if 'cfg_uncond' in k:
                old, new = state_dict[k], self.cfg_uncond.data
                min_tlen = min(old.shape[0], new.shape[0])
                if min_tlen == old.shape[0]:
                    state_dict[k] = torch.cat((old.to(device=new.device, dtype=new.dtype), new[min_tlen:]))
                else:
                    state_dict[k] = old[:min_tlen]
        
        for buf_name in ('lvl_1L', 'attn_bias_for_masking', 'Infinity_visible_kvlen', 'Infinity_invisible_qlen'):
            state_dict.pop(buf_name, None)
            if hasattr(self, buf_name):
                state_dict[buf_name] = getattr(self, buf_name)
        
        return super().load_state_dict(state_dict=state_dict, strict=strict, assign=assign)
    
    def special_init(
        self,
        aln_init: float,
        aln_gamma_init: float,
        scale_head: float,
        scale_proj: int,
    ):
        # init head's norm
        if isinstance(self.head_nm, AdaLNBeforeHead):
            self.head_nm.ada_lin[-1].weight.data.mul_(aln_init)    # there's no gamma for head
            if hasattr(self.head_nm.ada_lin[-1], 'bias') and self.head_nm.ada_lin[-1].bias is not None:
                self.head_nm.ada_lin[-1].bias.data.zero_()
        
        # init head's proj
        if scale_head >= 0:
            if isinstance(self.head, nn.Linear):
                self.head.weight.data.mul_(scale_head)
                self.head.bias.data.zero_()
            elif isinstance(self.head, nn.Sequential):
                self.head[-1].weight.data.mul_(scale_head)
                self.head[-1].bias.data.zero_()
        
        depth = len(self.unregistered_blocks)
        for block_idx, sab in enumerate(self.unregistered_blocks):
            sab: Union[SelfAttnBlock, CrossAttnBlock]
            # init proj
            scale = 1 / math.sqrt(2*depth if scale_proj == 1 else 2*(1 + block_idx))
            if scale_proj == 1:
                if self.t2i:
                    sab.sa.proj.weight.data.mul_(scale)
                    sab.ca.proj.weight.data.mul_(scale)
                else:
                    sab.attn.proj.weight.data.mul_(scale)
                sab.ffn.fc2.weight.data.mul_(scale)
            # if sab.using_swiglu:
            #     nn.init.ones_(sab.ffn.fcg.bias)
            #     nn.init.trunc_normal_(sab.ffn.fcg.weight, std=1e-5)
            
            # init ada_lin
            if hasattr(sab, 'ada_lin'):
                lin = sab.ada_lin[-1]
                lin.weight.data[:2*self.C].mul_(aln_gamma_init)     # init gamma
                lin.weight.data[2*self.C:].mul_(aln_init)           # init scale and shift
                if hasattr(lin, 'bias') and lin.bias is not None:
                    lin.bias.data.zero_()
            elif hasattr(sab, 'ada_gss'):
                sab.ada_gss.data[:, :, :2, :].mul_(aln_gamma_init)  # init gamma
                sab.ada_gss.data[:, :, 2:, :].mul_(aln_init)        # init scale and shift
    
    def extra_repr(self):
        return f'drop_path_rate={self.drop_path_rate}'
    
    def get_layer_id_and_scale_exp(self, para_name: str):
        raise NotImplementedError


def sample_with_top_k_top_p_also_inplace_modifying_logits_(logits_BlV: torch.Tensor, top_k: int = 0, top_p: float = 0.0, rng=None, num_samples=1) -> torch.Tensor:  # return idx, shaped (B, l)
    B, l, V = logits_BlV.shape
    if top_k > 0:
        top_k = min(top_k, V)
        idx_to_remove = logits_BlV < logits_BlV.topk(top_k, largest=True, sorted=False, dim=-1)[0].amin(dim=-1, keepdim=True)
        logits_BlV.masked_fill_(idx_to_remove, -torch.inf)
    if top_p > 0:
        sorted_logits, sorted_idx = logits_BlV.sort(dim=-1, descending=False)
        sorted_idx_to_remove = sorted_logits.softmax(dim=-1).cumsum_(dim=-1) <= (1 - top_p)
        sorted_idx_to_remove[..., -1:] = False
        logits_BlV.masked_fill_(sorted_idx_to_remove.scatter(sorted_idx.ndim - 1, sorted_idx, sorted_idx_to_remove), -torch.inf)
    # sample (have to squeeze cuz multinomial can only be used on 2D tensor)
    replacement = num_samples >= 0
    num_samples = abs(num_samples)
    return torch.multinomial(logits_BlV.softmax(dim=-1).view(-1, V), num_samples=num_samples, replacement=replacement, generator=rng).view(B, l, num_samples)

def sampling_with_top_k_top_p_also_inplace_modifying_probs_(probs_BlV: torch.Tensor, top_k: int = 0, top_p: float = 0.0, rng=None, num_samples=1) -> torch.Tensor:  # return idx, shaped (B, l)
    B, l, V = probs_BlV.shape
    if top_k > 0:
        top_k = min(top_k, V)
        idx_to_remove = probs_BlV < probs_BlV.topk(top_k, largest=True, sorted=False, dim=-1)[0].amin(dim=-1, keepdim=True)
        probs_BlV.masked_fill_(idx_to_remove, 0)
    if top_p > 0:
        sorted_probs, sorted_idx = probs_BlV.sort(dim=-1, descending=False)
        sorted_idx_to_remove = sorted_probs.softmax(dim=-1).cumsum_(dim=-1) <= (1 - top_p)
        sorted_idx_to_remove[..., -1:] = False
        probs_BlV.masked_fill_(sorted_idx_to_remove.scatter(sorted_idx.ndim - 1, sorted_idx, sorted_idx_to_remove), 0)
    # sample (have to squeeze cuz multinomial can only be used on 2D tensor)
    probs_BlV = probs_BlV / probs_BlV.sum(-1, keepdims=True)
    replacement = num_samples >= 0
    num_samples = abs(num_samples)
    return torch.multinomial(probs_BlV.view(-1, V), num_samples=num_samples, replacement=replacement, generator=rng).view(B, l, num_samples)


def get_params_num(d, w, mlp):
    m = round(mlp * w / 256) * 256
    s = d * (w**2 * 8 + w*m * 2)    # sa+ca, mlp
    s += w**2 * 6       # saln
    s += 4096 * w       # pred
    s += 32 * w         # we
    
    Ct5 = 4096
    s += Ct5*w * 4      # T5 attn pool
    s += Ct5*w + w*w    # T5 mlp
    return f'{s/1e9:.2f}B'


TIMM_KEYS = {'img_size', 'pretrained', 'pretrained_cfg', 'pretrained_cfg_overlay', 'global_pool'}

@register_model
def infinity_2b(depth=32, embed_dim=2048, num_heads=2048//128, drop_path_rate=0.1, **kwargs): return Infinity(depth=depth, embed_dim=embed_dim, num_heads=num_heads, mlp_ratio=4, drop_path_rate=drop_path_rate, **{k: v for k, v in kwargs.items() if k not in TIMM_KEYS})

@register_model
def infinity_20b(depth=58, embed_dim=4608, num_heads=4608//128, drop_path_rate=0.25, **kwargs): return Infinity(depth=depth, embed_dim=embed_dim, num_heads=num_heads, mlp_ratio=4, drop_path_rate=drop_path_rate, **{k: v for k, v in kwargs.items() if k not in TIMM_KEYS})

# model configuration for scaling Infinity transformer
@register_model
def infinity_layer12(depth=12, embed_dim=768, num_heads=8, drop_path_rate=0.1, **kwargs): 
    return Infinity(depth=depth, embed_dim=embed_dim, num_heads=num_heads, mlp_ratio=4, drop_path_rate=drop_path_rate, **{k: v for k, v in kwargs.items() if k not in TIMM_KEYS})
@register_model
def infinity_layer16(depth=16, embed_dim=1152, num_heads=12, drop_path_rate=0.1, **kwargs): 
    return Infinity(depth=depth, embed_dim=embed_dim, num_heads=num_heads, mlp_ratio=4, drop_path_rate=drop_path_rate, **{k: v for k, v in kwargs.items() if k not in TIMM_KEYS})
@register_model
def infinity_layer24(depth=24, embed_dim=1536, num_heads=16, drop_path_rate=0.1, **kwargs): 
    return Infinity(depth=depth, embed_dim=embed_dim, num_heads=num_heads, mlp_ratio=4, drop_path_rate=drop_path_rate, **{k: v for k, v in kwargs.items() if k not in TIMM_KEYS})
@register_model
def infinity_layer32(depth=32, embed_dim=2080, num_heads=20, drop_path_rate=0.1, **kwargs): 
    return Infinity(depth=depth, embed_dim=embed_dim, num_heads=num_heads, mlp_ratio=4, drop_path_rate=drop_path_rate, **{k: v for k, v in kwargs.items() if k not in TIMM_KEYS})
@register_model
def infinity_layer40(depth=40, embed_dim=2688, num_heads=24, drop_path_rate=0.1, **kwargs): 
    return Infinity(depth=depth, embed_dim=embed_dim, num_heads=num_heads, mlp_ratio=4, drop_path_rate=drop_path_rate, **{k: v for k, v in kwargs.items() if k not in TIMM_KEYS})
@register_model
def infinity_layer48(depth=48, embed_dim=3360, num_heads=28, drop_path_rate=0.1, **kwargs): 
    return Infinity(depth=depth, embed_dim=embed_dim, num_heads=num_heads, mlp_ratio=4, drop_path_rate=drop_path_rate, **{k: v for k, v in kwargs.items() if k not in TIMM_KEYS})