Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,957 Bytes
32287b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
import argparse
import os
import imageio
import torch
import numpy as np
from einops import rearrange
from torch import Tensor, nn
import torch.nn.functional as F
import torchvision
from torchvision import transforms
from safetensors.torch import load_file
import torch.utils.checkpoint as checkpoint
from .conv import Conv
from .multiscale_bsq import MultiScaleBSQ
ptdtype = {None: torch.float32, 'fp32': torch.float32, 'bf16': torch.bfloat16}
class Normalize(nn.Module):
def __init__(self, in_channels, norm_type, norm_axis="spatial"):
super().__init__()
self.norm_axis = norm_axis
assert norm_type in ['group', 'batch', "no"]
if norm_type == 'group':
if in_channels % 32 == 0:
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
elif in_channels % 24 == 0:
self.norm = nn.GroupNorm(num_groups=24, num_channels=in_channels, eps=1e-6, affine=True)
else:
raise NotImplementedError
elif norm_type == 'batch':
self.norm = nn.SyncBatchNorm(in_channels, track_running_stats=False) # Runtime Error: grad inplace if set track_running_stats to True
elif norm_type == 'no':
self.norm = nn.Identity()
def forward(self, x):
if self.norm_axis == "spatial":
if x.ndim == 4:
x = self.norm(x)
else:
B, C, T, H, W = x.shape
x = rearrange(x, "B C T H W -> (B T) C H W")
x = self.norm(x)
x = rearrange(x, "(B T) C H W -> B C T H W", T=T)
elif self.norm_axis == "spatial-temporal":
x = self.norm(x)
else:
raise NotImplementedError
return x
def swish(x: Tensor) -> Tensor:
try:
return x * torch.sigmoid(x)
except:
device = x.device
x = x.cpu().pin_memory()
return (x*torch.sigmoid(x)).to(device=device)
class AttnBlock(nn.Module):
def __init__(self, in_channels, norm_type='group', cnn_param=None):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels, norm_type, norm_axis=cnn_param["cnn_norm_axis"])
self.q = Conv(in_channels, in_channels, kernel_size=1)
self.k = Conv(in_channels, in_channels, kernel_size=1)
self.v = Conv(in_channels, in_channels, kernel_size=1)
self.proj_out = Conv(in_channels, in_channels, kernel_size=1)
def attention(self, h_: Tensor) -> Tensor:
B, _, T, _, _ = h_.shape
h_ = self.norm(h_)
h_ = rearrange(h_, "B C T H W -> (B T) C H W") # spatial attention only
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
b, c, h, w = q.shape
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
return rearrange(h_, "(b t) 1 (h w) c -> b c t h w", h=h, w=w, c=c, b=B, t=T)
def forward(self, x: Tensor) -> Tensor:
return x + self.proj_out(self.attention(x))
class ResnetBlock(nn.Module):
def __init__(self, in_channels: int, out_channels: int, norm_type='group', cnn_param=None):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.norm1 = Normalize(in_channels, norm_type, norm_axis=cnn_param["cnn_norm_axis"])
if cnn_param["res_conv_2d"] in ["half", "full"]:
self.conv1 = Conv(in_channels, out_channels, kernel_size=3, stride=1, padding=1, cnn_type="2d")
else:
self.conv1 = Conv(in_channels, out_channels, kernel_size=3, stride=1, padding=1, cnn_type=cnn_param["cnn_type"])
self.norm2 = Normalize(out_channels, norm_type, norm_axis=cnn_param["cnn_norm_axis"])
if cnn_param["res_conv_2d"] in ["full"]:
self.conv2 = Conv(out_channels, out_channels, kernel_size=3, stride=1, padding=1, cnn_type="2d")
else:
self.conv2 = Conv(out_channels, out_channels, kernel_size=3, stride=1, padding=1, cnn_type=cnn_param["cnn_type"])
if self.in_channels != self.out_channels:
self.nin_shortcut = Conv(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x):
h = x
h = self.norm1(h)
h = swish(h)
h = self.conv1(h)
h = self.norm2(h)
h = swish(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
x = self.nin_shortcut(x)
return x + h
class Downsample(nn.Module):
def __init__(self, in_channels, cnn_type="2d", spatial_down=False, temporal_down=False):
super().__init__()
assert spatial_down == True
if cnn_type == "2d":
self.pad = (0,1,0,1)
if cnn_type == "3d":
self.pad = (0,1,0,1,0,0) # add padding to the right for h-axis and w-axis. No padding for t-axis
# no asymmetric padding in torch conv, must do it ourselves
self.conv = Conv(in_channels, in_channels, kernel_size=3, stride=2, padding=0, cnn_type=cnn_type, temporal_down=temporal_down)
def forward(self, x: Tensor):
x = nn.functional.pad(x, self.pad, mode="constant", value=0)
x = self.conv(x)
return x
class Upsample(nn.Module):
def __init__(self, in_channels, cnn_type="2d", spatial_up=False, temporal_up=False, use_pxsl=False):
super().__init__()
if cnn_type == "2d":
self.scale_factor = 2
self.causal_offset = 0
else:
assert spatial_up == True
if temporal_up:
self.scale_factor = (2,2,2)
self.causal_offset = -1
else:
self.scale_factor = (1,2,2)
self.causal_offset = 0
self.use_pxsl = use_pxsl
if self.use_pxsl:
self.conv = Conv(in_channels, in_channels*4, kernel_size=3, stride=1, padding=1, cnn_type=cnn_type, causal_offset=self.causal_offset)
self.pxsl = nn.PixelShuffle(2)
else:
self.conv = Conv(in_channels, in_channels, kernel_size=3, stride=1, padding=1, cnn_type=cnn_type, causal_offset=self.causal_offset)
def forward(self, x: Tensor):
if self.use_pxsl:
x = self.conv(x)
x = self.pxsl(x)
else:
try:
x = F.interpolate(x, scale_factor=self.scale_factor, mode="nearest")
except:
# shard across channel
_xs = []
for i in range(x.shape[1]):
_x = F.interpolate(x[:,i:i+1,...], scale_factor=self.scale_factor, mode="nearest")
_xs.append(_x)
x = torch.cat(_xs, dim=1)
x = self.conv(x)
return x
class Encoder(nn.Module):
def __init__(
self,
ch: int,
ch_mult: list[int],
num_res_blocks: int,
z_channels: int,
in_channels = 3,
patch_size=8, temporal_patch_size=4,
norm_type='group', cnn_param=None,
use_checkpoint=False,
use_vae=True,
):
super().__init__()
self.max_down = np.log2(patch_size)
self.temporal_max_down = np.log2(temporal_patch_size)
self.temporal_down_offset = self.max_down - self.temporal_max_down
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.in_channels = in_channels
self.cnn_param = cnn_param
self.use_checkpoint = use_checkpoint
# downsampling
# self.conv_in = Conv(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
# cnn_param["cnn_type"] = "2d" for images, cnn_param["cnn_type"] = "3d" for videos
if cnn_param["conv_in_out_2d"] == "yes": # "yes" for video
self.conv_in = Conv(in_channels, ch, kernel_size=3, stride=1, padding=1, cnn_type="2d")
else:
self.conv_in = Conv(in_channels, ch, kernel_size=3, stride=1, padding=1, cnn_type=cnn_param["cnn_type"])
in_ch_mult = (1,) + tuple(ch_mult)
self.in_ch_mult = in_ch_mult
self.down = nn.ModuleList()
block_in = self.ch
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, norm_type=norm_type, cnn_param=cnn_param))
block_in = block_out
down = nn.Module()
down.block = block
down.attn = attn
# downsample, stride=1, stride=2, stride=2 for 4x8x8 Video VAE
spatial_down = True if i_level < self.max_down else False
temporal_down = True if i_level < self.max_down and i_level >= self.temporal_down_offset else False
if spatial_down or temporal_down:
down.downsample = Downsample(block_in, cnn_type=cnn_param["cnn_type"], spatial_down=spatial_down, temporal_down=temporal_down)
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, norm_type=norm_type, cnn_param=cnn_param)
if cnn_param["cnn_attention"] == "yes":
self.mid.attn_1 = AttnBlock(block_in, norm_type, cnn_param=cnn_param)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, norm_type=norm_type, cnn_param=cnn_param)
# end
self.norm_out = Normalize(block_in, norm_type, norm_axis=cnn_param["cnn_norm_axis"])
if cnn_param["conv_inner_2d"] == "yes":
self.conv_out = Conv(block_in, (int(use_vae) + 1) * z_channels, kernel_size=3, stride=1, padding=1, cnn_type="2d")
else:
self.conv_out = Conv(block_in, (int(use_vae) + 1) * z_channels, kernel_size=3, stride=1, padding=1, cnn_type=cnn_param["cnn_type"])
def forward(self, x, return_hidden=False):
if not self.use_checkpoint:
return self._forward(x, return_hidden=return_hidden)
else:
return checkpoint.checkpoint(self._forward, x, return_hidden, use_reentrant=False)
def _forward(self, x: Tensor, return_hidden=False) -> Tensor:
# downsampling
h0 = self.conv_in(x)
hs = [h0]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1])
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if hasattr(self.down[i_level], "downsample"):
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
hs_mid = [h]
h = self.mid.block_1(h)
if self.cnn_param["cnn_attention"] == "yes":
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
hs_mid.append(h)
# end
h = self.norm_out(h)
h = swish(h)
h = self.conv_out(h)
if return_hidden:
return h, hs, hs_mid
else:
return h
class Decoder(nn.Module):
def __init__(
self,
ch: int,
ch_mult: list[int],
num_res_blocks: int,
z_channels: int,
out_ch = 3,
patch_size=8, temporal_patch_size=4,
norm_type="group", cnn_param=None,
use_checkpoint=False,
use_freq_dec=False, # use frequency features for decoder
use_pxsf=False
):
super().__init__()
self.max_up = np.log2(patch_size)
self.temporal_max_up = np.log2(temporal_patch_size)
self.temporal_up_offset = self.max_up - self.temporal_max_up
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.ffactor = 2 ** (self.num_resolutions - 1)
self.cnn_param = cnn_param
self.use_checkpoint = use_checkpoint
self.use_freq_dec = use_freq_dec
self.use_pxsf = use_pxsf
# compute in_ch_mult, block_in and curr_res at lowest res
block_in = ch * ch_mult[self.num_resolutions - 1]
# z to block_in
if cnn_param["conv_inner_2d"] == "yes":
self.conv_in = Conv(z_channels, block_in, kernel_size=3, stride=1, padding=1, cnn_type="2d")
else:
self.conv_in = Conv(z_channels, block_in, kernel_size=3, stride=1, padding=1, cnn_type=cnn_param["cnn_type"])
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, norm_type=norm_type, cnn_param=cnn_param)
if cnn_param["cnn_attention"] == "yes":
self.mid.attn_1 = AttnBlock(block_in, norm_type=norm_type, cnn_param=cnn_param)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, norm_type=norm_type, cnn_param=cnn_param)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks + 1):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, norm_type=norm_type, cnn_param=cnn_param))
block_in = block_out
up = nn.Module()
up.block = block
up.attn = attn
# upsample, stride=1, stride=2, stride=2 for 4x8x8 Video VAE, offset 1 compared with encoder
# https://github.com/black-forest-labs/flux/blob/b4f689aaccd40de93429865793e84a734f4a6254/src/flux/modules/autoencoder.py#L228
spatial_up = True if 1 <= i_level <= self.max_up else False
temporal_up = True if 1 <= i_level <= self.max_up and i_level >= self.temporal_up_offset+1 else False
if spatial_up or temporal_up:
up.upsample = Upsample(block_in, cnn_type=cnn_param["cnn_type"], spatial_up=spatial_up, temporal_up=temporal_up, use_pxsl=self.use_pxsf)
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Normalize(block_in, norm_type, norm_axis=cnn_param["cnn_norm_axis"])
if cnn_param["conv_in_out_2d"] == "yes":
self.conv_out = Conv(block_in, out_ch, kernel_size=3, stride=1, padding=1, cnn_type="2d")
else:
self.conv_out = Conv(block_in, out_ch, kernel_size=3, stride=1, padding=1, cnn_type=cnn_param["cnn_type"])
def forward(self, z):
if not self.use_checkpoint:
return self._forward(z)
else:
return checkpoint.checkpoint(self._forward, z, use_reentrant=False)
def _forward(self, z: Tensor) -> Tensor:
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid.block_1(h)
if self.cnn_param["cnn_attention"] == "yes":
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if hasattr(self.up[i_level], "upsample"):
h = self.up[i_level].upsample(h)
# end
h = self.norm_out(h)
h = swish(h)
h = self.conv_out(h)
return h
class AutoEncoder(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
cnn_param = dict(
cnn_type=args.cnn_type,
conv_in_out_2d=args.conv_in_out_2d,
res_conv_2d=args.res_conv_2d,
cnn_attention=args.cnn_attention,
cnn_norm_axis=args.cnn_norm_axis,
conv_inner_2d=args.conv_inner_2d,
)
self.encoder = Encoder(
ch=args.base_ch,
ch_mult=args.encoder_ch_mult,
num_res_blocks=args.num_res_blocks,
z_channels=args.codebook_dim,
patch_size=args.patch_size,
temporal_patch_size=args.temporal_patch_size,
cnn_param=cnn_param,
use_checkpoint=args.use_checkpoint,
use_vae=args.use_vae,
)
self.decoder = Decoder(
ch=args.base_ch,
ch_mult=args.decoder_ch_mult,
num_res_blocks=args.num_res_blocks,
z_channels=args.codebook_dim,
patch_size=args.patch_size,
temporal_patch_size=args.temporal_patch_size,
cnn_param=cnn_param,
use_checkpoint=args.use_checkpoint,
use_freq_dec=args.use_freq_dec,
use_pxsf=args.use_pxsf # pixelshuffle for upsampling
)
self.z_drop = nn.Dropout(args.z_drop)
self.scale_factor = 0.3611
self.shift_factor = 0.1159
self.codebook_dim = self.embed_dim = args.codebook_dim
self.gan_feat_weight = args.gan_feat_weight
self.video_perceptual_weight = args.video_perceptual_weight
self.recon_loss_type = args.recon_loss_type
self.l1_weight = args.l1_weight
self.use_vae = args.use_vae
self.kl_weight = args.kl_weight
self.lfq_weight = args.lfq_weight
self.image_gan_weight = args.image_gan_weight # image GAN loss weight
self.video_gan_weight = args.video_gan_weight # video GAN loss weight
self.perceptual_weight = args.perceptual_weight
self.flux_weight = args.flux_weight
self.cycle_weight = args.cycle_weight
self.cycle_feat_weight = args.cycle_feat_weight
self.cycle_gan_weight = args.cycle_gan_weight
self.flux_image_encoder = None
if not args.use_vae:
if args.quantizer_type == 'MultiScaleBSQ':
self.quantizer = MultiScaleBSQ(
dim = args.codebook_dim, # this is the input feature dimension, defaults to log2(codebook_size) if not defined
codebook_size = args.codebook_size, # codebook size, must be a power of 2
entropy_loss_weight = args.entropy_loss_weight, # how much weight to place on entropy loss
diversity_gamma = args.diversity_gamma, # within entropy loss, how much weight to give to diversity of codes, taken from https://arxiv.org/abs/1911.05894
preserve_norm=args.preserve_norm, # preserve norm of the input for BSQ
ln_before_quant=args.ln_before_quant, # use layer norm before quantization
ln_init_by_sqrt=args.ln_init_by_sqrt, # layer norm init value 1/sqrt(d)
commitment_loss_weight=args.commitment_loss_weight, # loss weight of commitment loss
new_quant=args.new_quant,
use_decay_factor=args.use_decay_factor,
mask_out=args.mask_out,
use_stochastic_depth=args.use_stochastic_depth,
drop_rate=args.drop_rate,
schedule_mode=args.schedule_mode,
keep_first_quant=args.keep_first_quant,
keep_last_quant=args.keep_last_quant,
remove_residual_detach=args.remove_residual_detach,
use_out_phi=args.use_out_phi,
use_out_phi_res=args.use_out_phi_res,
random_flip = args.random_flip,
flip_prob = args.flip_prob,
flip_mode = args.flip_mode,
max_flip_lvl = args.max_flip_lvl,
random_flip_1lvl = args.random_flip_1lvl,
flip_lvl_idx = args.flip_lvl_idx,
drop_when_test = args.drop_when_test,
drop_lvl_idx = args.drop_lvl_idx,
drop_lvl_num = args.drop_lvl_num,
)
self.quantize = self.quantizer
self.vocab_size = args.codebook_size
else:
raise NotImplementedError(f"{args.quantizer_type} not supported")
def forward(self, x):
is_image = x.ndim == 4
if not is_image:
B, C, T, H, W = x.shape
else:
B, C, H, W = x.shape
T = 1
enc_dtype = ptdtype[self.args.encoder_dtype]
with torch.amp.autocast("cuda", dtype=enc_dtype):
h, hs, hs_mid = self.encoder(x, return_hidden=True) # B C H W or B C T H W
hs = [_h.detach() for _h in hs]
hs_mid = [_h.detach() for _h in hs_mid]
h = h.to(dtype=torch.float32)
# print(z.shape)
# Multiscale LFQ
z, all_indices, all_loss = self.quantizer(h)
x_recon = self.decoder(z)
vq_output = {
"commitment_loss": torch.mean(all_loss) * self.lfq_weight, # here commitment loss is sum of commitment loss and entropy penalty
"encodings": all_indices,
}
return x_recon, vq_output
def encode_for_raw_features(self, x, scale_schedule, return_residual_norm_per_scale=False):
is_image = x.ndim == 4
if not is_image:
B, C, T, H, W = x.shape
else:
B, C, H, W = x.shape
T = 1
enc_dtype = ptdtype[self.args.encoder_dtype]
with torch.amp.autocast("cuda", dtype=enc_dtype):
h, hs, hs_mid = self.encoder(x, return_hidden=True) # B C H W or B C T H W
hs = [_h.detach() for _h in hs]
hs_mid = [_h.detach() for _h in hs_mid]
h = h.to(dtype=torch.float32)
return h, hs, hs_mid
def encode(self, x, scale_schedule, return_residual_norm_per_scale=False):
h, hs, hs_mid = self.encode_for_raw_features(x, scale_schedule, return_residual_norm_per_scale)
# Multiscale LFQ
z, all_indices, all_bit_indices, residual_norm_per_scale, all_loss, var_input = self.quantizer(h, scale_schedule=scale_schedule, return_residual_norm_per_scale=return_residual_norm_per_scale)
return h, z, all_indices, all_bit_indices, residual_norm_per_scale, var_input
def decode(self, z):
x_recon = self.decoder(z)
x_recon = torch.clamp(x_recon, min=-1, max=1)
return x_recon
def decode_from_indices(self, all_indices, scale_schedule, label_type):
summed_codes = 0
for idx_Bl in all_indices:
codes = self.quantizer.lfq.indices_to_codes(idx_Bl, label_type)
summed_codes += F.interpolate(codes, size=scale_schedule[-1], mode=self.quantizer.z_interplote_up)
assert summed_codes.shape[-3] == 1
x_recon = self.decoder(summed_codes.squeeze(-3))
x_recon = torch.clamp(x_recon, min=-1, max=1)
return summed_codes, x_recon
@staticmethod
def add_model_specific_args(parent_parser):
parser = argparse.ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument("--flux_weight", type=float, default=0)
parser.add_argument("--cycle_weight", type=float, default=0)
parser.add_argument("--cycle_feat_weight", type=float, default=0)
parser.add_argument("--cycle_gan_weight", type=float, default=0)
parser.add_argument("--cycle_loop", type=int, default=0)
parser.add_argument("--z_drop", type=float, default=0.)
return parser
|