File size: 23,957 Bytes
32287b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import argparse
import os
import imageio
import torch
import numpy as np
from einops import rearrange
from torch import Tensor, nn
import torch.nn.functional as F
import torchvision
from torchvision import transforms
from safetensors.torch import load_file
import torch.utils.checkpoint as checkpoint

from .conv import Conv
from .multiscale_bsq import MultiScaleBSQ

ptdtype = {None: torch.float32, 'fp32': torch.float32, 'bf16': torch.bfloat16}

class Normalize(nn.Module):
    def __init__(self, in_channels, norm_type, norm_axis="spatial"):
        super().__init__()
        self.norm_axis = norm_axis
        assert norm_type in ['group', 'batch', "no"]
        if norm_type == 'group':
            if in_channels % 32 == 0:
                self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
            elif in_channels % 24 == 0: 
                self.norm = nn.GroupNorm(num_groups=24, num_channels=in_channels, eps=1e-6, affine=True)
            else:
                raise NotImplementedError
        elif norm_type == 'batch':
            self.norm = nn.SyncBatchNorm(in_channels, track_running_stats=False) # Runtime Error: grad inplace if set track_running_stats to True
        elif norm_type == 'no':
            self.norm = nn.Identity()
    
    def forward(self, x):
        if self.norm_axis == "spatial":
            if x.ndim == 4:
                x = self.norm(x)
            else:
                B, C, T, H, W = x.shape
                x = rearrange(x, "B C T H W -> (B T) C H W")
                x = self.norm(x)
                x = rearrange(x, "(B T) C H W -> B C T H W", T=T)
        elif self.norm_axis == "spatial-temporal":
            x = self.norm(x)
        else:
            raise NotImplementedError
        return x

def swish(x: Tensor) -> Tensor:
    try:
        return x * torch.sigmoid(x)
    except:
        device = x.device
        x = x.cpu().pin_memory()
        return (x*torch.sigmoid(x)).to(device=device)


class AttnBlock(nn.Module):
    def __init__(self, in_channels, norm_type='group', cnn_param=None):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels, norm_type, norm_axis=cnn_param["cnn_norm_axis"])

        self.q = Conv(in_channels, in_channels, kernel_size=1)
        self.k = Conv(in_channels, in_channels, kernel_size=1)
        self.v = Conv(in_channels, in_channels, kernel_size=1)
        self.proj_out = Conv(in_channels, in_channels, kernel_size=1)

    def attention(self, h_: Tensor) -> Tensor:
        B, _, T, _, _ = h_.shape
        h_ = self.norm(h_)
        h_ = rearrange(h_, "B C T H W -> (B T) C H W") # spatial attention only
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        b, c, h, w = q.shape
        q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
        k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
        v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
        h_ = nn.functional.scaled_dot_product_attention(q, k, v)

        return rearrange(h_, "(b t) 1 (h w) c -> b c t h w", h=h, w=w, c=c, b=B, t=T)

    def forward(self, x: Tensor) -> Tensor:
        return x + self.proj_out(self.attention(x))


class ResnetBlock(nn.Module):
    def __init__(self, in_channels: int, out_channels: int, norm_type='group', cnn_param=None):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels

        self.norm1 = Normalize(in_channels, norm_type, norm_axis=cnn_param["cnn_norm_axis"])
        if cnn_param["res_conv_2d"] in ["half", "full"]:
            self.conv1 = Conv(in_channels, out_channels, kernel_size=3, stride=1, padding=1, cnn_type="2d")
        else:
            self.conv1 = Conv(in_channels, out_channels, kernel_size=3, stride=1, padding=1, cnn_type=cnn_param["cnn_type"])
        self.norm2 = Normalize(out_channels, norm_type, norm_axis=cnn_param["cnn_norm_axis"])
        if cnn_param["res_conv_2d"] in ["full"]:
            self.conv2 = Conv(out_channels, out_channels, kernel_size=3, stride=1, padding=1, cnn_type="2d")
        else:
            self.conv2 = Conv(out_channels, out_channels, kernel_size=3, stride=1, padding=1, cnn_type=cnn_param["cnn_type"])
        if self.in_channels != self.out_channels:
            self.nin_shortcut = Conv(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, x):
        h = x
        h = self.norm1(h)
        h = swish(h)
        h = self.conv1(h)

        h = self.norm2(h)
        h = swish(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            x = self.nin_shortcut(x)

        return x + h


class Downsample(nn.Module):
    def __init__(self, in_channels, cnn_type="2d", spatial_down=False, temporal_down=False):
        super().__init__()
        assert spatial_down == True
        if cnn_type == "2d":
            self.pad = (0,1,0,1)
        if cnn_type == "3d":
            self.pad = (0,1,0,1,0,0) # add padding to the right for h-axis and w-axis. No padding for t-axis 
        # no asymmetric padding in torch conv, must do it ourselves
        self.conv = Conv(in_channels, in_channels, kernel_size=3, stride=2, padding=0, cnn_type=cnn_type, temporal_down=temporal_down)

    def forward(self, x: Tensor):
        x = nn.functional.pad(x, self.pad, mode="constant", value=0)
        x = self.conv(x)
        return x


class Upsample(nn.Module):
    def __init__(self, in_channels, cnn_type="2d", spatial_up=False, temporal_up=False, use_pxsl=False):
        super().__init__()
        if cnn_type == "2d":
            self.scale_factor = 2
            self.causal_offset = 0
        else:
            assert spatial_up == True
            if temporal_up:
                self.scale_factor = (2,2,2)
                self.causal_offset = -1
            else:
                self.scale_factor = (1,2,2)
                self.causal_offset = 0
        self.use_pxsl = use_pxsl
        if self.use_pxsl:
            self.conv = Conv(in_channels, in_channels*4, kernel_size=3, stride=1, padding=1, cnn_type=cnn_type, causal_offset=self.causal_offset)
            self.pxsl = nn.PixelShuffle(2)
        else:
            self.conv = Conv(in_channels, in_channels, kernel_size=3, stride=1, padding=1, cnn_type=cnn_type, causal_offset=self.causal_offset)

    def forward(self, x: Tensor):
        if self.use_pxsl:
            x = self.conv(x)
            x = self.pxsl(x)
        else:
            try:
                x = F.interpolate(x, scale_factor=self.scale_factor, mode="nearest")
            except:
                # shard across channel
                _xs = []
                for i in range(x.shape[1]):
                    _x = F.interpolate(x[:,i:i+1,...], scale_factor=self.scale_factor, mode="nearest")
                    _xs.append(_x)
                x = torch.cat(_xs, dim=1)
            x = self.conv(x)
        return x


class Encoder(nn.Module):
    def __init__(
        self,
        ch: int,
        ch_mult: list[int],
        num_res_blocks: int,
        z_channels: int,
        in_channels = 3,
        patch_size=8, temporal_patch_size=4, 
        norm_type='group', cnn_param=None,
        use_checkpoint=False,
        use_vae=True,
    ):
        super().__init__()
        self.max_down = np.log2(patch_size)
        self.temporal_max_down = np.log2(temporal_patch_size)
        self.temporal_down_offset = self.max_down - self.temporal_max_down
        self.ch = ch
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.in_channels = in_channels
        self.cnn_param = cnn_param
        self.use_checkpoint = use_checkpoint
        # downsampling
        # self.conv_in = Conv(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
        # cnn_param["cnn_type"] = "2d" for images, cnn_param["cnn_type"] = "3d" for videos
        if cnn_param["conv_in_out_2d"] == "yes": # "yes" for video
            self.conv_in = Conv(in_channels, ch, kernel_size=3, stride=1, padding=1, cnn_type="2d")
        else:
            self.conv_in = Conv(in_channels, ch, kernel_size=3, stride=1, padding=1, cnn_type=cnn_param["cnn_type"])

        in_ch_mult = (1,) + tuple(ch_mult)
        self.in_ch_mult = in_ch_mult
        self.down = nn.ModuleList()
        block_in = self.ch
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch * in_ch_mult[i_level]
            block_out = ch * ch_mult[i_level]
            for _ in range(self.num_res_blocks):
                block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, norm_type=norm_type, cnn_param=cnn_param))
                block_in = block_out
            down = nn.Module()
            down.block = block
            down.attn = attn
            # downsample, stride=1, stride=2, stride=2 for 4x8x8 Video VAE
            spatial_down = True if i_level < self.max_down else False
            temporal_down = True if i_level < self.max_down and i_level >= self.temporal_down_offset else False
            if spatial_down or temporal_down:
                down.downsample = Downsample(block_in, cnn_type=cnn_param["cnn_type"], spatial_down=spatial_down, temporal_down=temporal_down)
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, norm_type=norm_type, cnn_param=cnn_param)
        if cnn_param["cnn_attention"] == "yes":
            self.mid.attn_1 = AttnBlock(block_in, norm_type, cnn_param=cnn_param)
        self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, norm_type=norm_type, cnn_param=cnn_param)

        # end
        self.norm_out = Normalize(block_in, norm_type, norm_axis=cnn_param["cnn_norm_axis"])
        if cnn_param["conv_inner_2d"] == "yes":
            self.conv_out = Conv(block_in, (int(use_vae) + 1) * z_channels, kernel_size=3, stride=1, padding=1, cnn_type="2d")
        else:
            self.conv_out = Conv(block_in, (int(use_vae) + 1) * z_channels, kernel_size=3, stride=1, padding=1, cnn_type=cnn_param["cnn_type"])

    def forward(self, x, return_hidden=False):
        if not self.use_checkpoint:
            return self._forward(x, return_hidden=return_hidden)
        else:
            return checkpoint.checkpoint(self._forward, x, return_hidden, use_reentrant=False)

    def _forward(self, x: Tensor, return_hidden=False) -> Tensor:
        # downsampling
        h0 = self.conv_in(x)
        hs = [h0]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1])
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if hasattr(self.down[i_level], "downsample"):
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        hs_mid = [h]
        h = self.mid.block_1(h)
        if self.cnn_param["cnn_attention"] == "yes":
            h = self.mid.attn_1(h)
        h = self.mid.block_2(h)
        hs_mid.append(h)
        # end
        h = self.norm_out(h)
        h = swish(h)
        h = self.conv_out(h)
        if return_hidden:
            return h, hs, hs_mid
        else:
            return h


class Decoder(nn.Module):
    def __init__(
        self,
        ch: int,
        ch_mult: list[int],
        num_res_blocks: int,
        z_channels: int,
        out_ch = 3, 
        patch_size=8, temporal_patch_size=4, 
        norm_type="group", cnn_param=None,
        use_checkpoint=False,
        use_freq_dec=False, # use frequency features for decoder
        use_pxsf=False
    ):
        super().__init__()
        self.max_up = np.log2(patch_size)
        self.temporal_max_up = np.log2(temporal_patch_size)
        self.temporal_up_offset = self.max_up - self.temporal_max_up
        self.ch = ch
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.ffactor = 2 ** (self.num_resolutions - 1)
        self.cnn_param = cnn_param
        self.use_checkpoint = use_checkpoint
        self.use_freq_dec = use_freq_dec
        self.use_pxsf = use_pxsf

        # compute in_ch_mult, block_in and curr_res at lowest res
        block_in = ch * ch_mult[self.num_resolutions - 1]

        # z to block_in
        if cnn_param["conv_inner_2d"] == "yes":
            self.conv_in = Conv(z_channels, block_in, kernel_size=3, stride=1, padding=1, cnn_type="2d")
        else:
            self.conv_in = Conv(z_channels, block_in, kernel_size=3, stride=1, padding=1, cnn_type=cnn_param["cnn_type"])

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, norm_type=norm_type, cnn_param=cnn_param)
        if cnn_param["cnn_attention"] == "yes":
            self.mid.attn_1 = AttnBlock(block_in, norm_type=norm_type, cnn_param=cnn_param)
        self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, norm_type=norm_type, cnn_param=cnn_param)

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch * ch_mult[i_level]
            for _ in range(self.num_res_blocks + 1):
                block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, norm_type=norm_type, cnn_param=cnn_param))
                block_in = block_out
            up = nn.Module()
            up.block = block
            up.attn = attn
            # upsample, stride=1, stride=2, stride=2 for 4x8x8 Video VAE, offset 1 compared with encoder
            # https://github.com/black-forest-labs/flux/blob/b4f689aaccd40de93429865793e84a734f4a6254/src/flux/modules/autoencoder.py#L228
            spatial_up = True if 1 <= i_level <= self.max_up else False
            temporal_up = True if 1 <= i_level <= self.max_up and i_level >= self.temporal_up_offset+1 else False
            if spatial_up or temporal_up:
                up.upsample = Upsample(block_in, cnn_type=cnn_param["cnn_type"], spatial_up=spatial_up, temporal_up=temporal_up, use_pxsl=self.use_pxsf)
            self.up.insert(0, up)  # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in, norm_type, norm_axis=cnn_param["cnn_norm_axis"])
        if cnn_param["conv_in_out_2d"] == "yes":
            self.conv_out = Conv(block_in, out_ch, kernel_size=3, stride=1, padding=1, cnn_type="2d")
        else:
            self.conv_out = Conv(block_in, out_ch, kernel_size=3, stride=1, padding=1, cnn_type=cnn_param["cnn_type"])

    def forward(self, z):
        if not self.use_checkpoint:
            return self._forward(z)
        else:
            return checkpoint.checkpoint(self._forward, z, use_reentrant=False)

    def _forward(self, z: Tensor) -> Tensor:
        # z to block_in
        h = self.conv_in(z)

        # middle
        h = self.mid.block_1(h)
        if self.cnn_param["cnn_attention"] == "yes":
            h = self.mid.attn_1(h)
        h = self.mid.block_2(h)

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks + 1):
                h = self.up[i_level].block[i_block](h)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if hasattr(self.up[i_level], "upsample"):
                h = self.up[i_level].upsample(h)

        # end
        h = self.norm_out(h)
        h = swish(h)
        h = self.conv_out(h)
        return h


class AutoEncoder(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.args = args
        cnn_param = dict(
            cnn_type=args.cnn_type,
            conv_in_out_2d=args.conv_in_out_2d,
            res_conv_2d=args.res_conv_2d,
            cnn_attention=args.cnn_attention,
            cnn_norm_axis=args.cnn_norm_axis,
            conv_inner_2d=args.conv_inner_2d,
        )
        self.encoder = Encoder(
            ch=args.base_ch,
            ch_mult=args.encoder_ch_mult,
            num_res_blocks=args.num_res_blocks,
            z_channels=args.codebook_dim,
            patch_size=args.patch_size,
            temporal_patch_size=args.temporal_patch_size,
            cnn_param=cnn_param,
            use_checkpoint=args.use_checkpoint,
            use_vae=args.use_vae,
        )
        self.decoder = Decoder(
            ch=args.base_ch,
            ch_mult=args.decoder_ch_mult,
            num_res_blocks=args.num_res_blocks,
            z_channels=args.codebook_dim,
            patch_size=args.patch_size,
            temporal_patch_size=args.temporal_patch_size,
            cnn_param=cnn_param,
            use_checkpoint=args.use_checkpoint,
            use_freq_dec=args.use_freq_dec,
            use_pxsf=args.use_pxsf # pixelshuffle for upsampling
        )
        self.z_drop = nn.Dropout(args.z_drop)
        self.scale_factor = 0.3611
        self.shift_factor = 0.1159
        self.codebook_dim = self.embed_dim = args.codebook_dim

        self.gan_feat_weight = args.gan_feat_weight
        self.video_perceptual_weight = args.video_perceptual_weight
        self.recon_loss_type = args.recon_loss_type
        self.l1_weight = args.l1_weight
        self.use_vae = args.use_vae
        self.kl_weight = args.kl_weight
        self.lfq_weight = args.lfq_weight
        self.image_gan_weight = args.image_gan_weight # image GAN loss weight
        self.video_gan_weight = args.video_gan_weight # video GAN loss weight
        self.perceptual_weight = args.perceptual_weight
        self.flux_weight = args.flux_weight
        self.cycle_weight = args.cycle_weight
        self.cycle_feat_weight = args.cycle_feat_weight
        self.cycle_gan_weight = args.cycle_gan_weight

        self.flux_image_encoder = None
        
        if not args.use_vae:
            if args.quantizer_type == 'MultiScaleBSQ':
                self.quantizer = MultiScaleBSQ(
                    dim = args.codebook_dim,                        # this is the input feature dimension, defaults to log2(codebook_size) if not defined  
                    codebook_size = args.codebook_size,             # codebook size, must be a power of 2
                    entropy_loss_weight = args.entropy_loss_weight, # how much weight to place on entropy loss
                    diversity_gamma = args.diversity_gamma,         # within entropy loss, how much weight to give to diversity of codes, taken from https://arxiv.org/abs/1911.05894
                    preserve_norm=args.preserve_norm,               # preserve norm of the input for BSQ
                    ln_before_quant=args.ln_before_quant,           # use layer norm before quantization
                    ln_init_by_sqrt=args.ln_init_by_sqrt,           # layer norm init value 1/sqrt(d)
                    commitment_loss_weight=args.commitment_loss_weight, # loss weight of commitment loss
                    new_quant=args.new_quant,
                    use_decay_factor=args.use_decay_factor,
                    mask_out=args.mask_out,
                    use_stochastic_depth=args.use_stochastic_depth,
                    drop_rate=args.drop_rate,
                    schedule_mode=args.schedule_mode,
                    keep_first_quant=args.keep_first_quant,
                    keep_last_quant=args.keep_last_quant,
                    remove_residual_detach=args.remove_residual_detach,
                    use_out_phi=args.use_out_phi,
                    use_out_phi_res=args.use_out_phi_res,
                    random_flip = args.random_flip,
                    flip_prob = args.flip_prob,
                    flip_mode = args.flip_mode,
                    max_flip_lvl = args.max_flip_lvl,
                    random_flip_1lvl = args.random_flip_1lvl,
                    flip_lvl_idx = args.flip_lvl_idx,
                    drop_when_test = args.drop_when_test,
                    drop_lvl_idx = args.drop_lvl_idx,
                    drop_lvl_num = args.drop_lvl_num,
                )
                self.quantize = self.quantizer
                self.vocab_size = args.codebook_size
            else:
                raise NotImplementedError(f"{args.quantizer_type} not supported")


    def forward(self, x):
        is_image = x.ndim == 4
        if not is_image:
            B, C, T, H, W = x.shape
        else:
            B, C, H, W = x.shape
            T = 1
        enc_dtype = ptdtype[self.args.encoder_dtype]

        with torch.amp.autocast("cuda", dtype=enc_dtype):
            h, hs, hs_mid = self.encoder(x, return_hidden=True) # B C H W or B C T H W
        hs = [_h.detach() for _h in hs]
        hs_mid = [_h.detach() for _h in hs_mid]
        h = h.to(dtype=torch.float32)
        # print(z.shape)
        # Multiscale LFQ            
        z, all_indices, all_loss = self.quantizer(h)
        x_recon = self.decoder(z)
        vq_output = {
            "commitment_loss": torch.mean(all_loss) * self.lfq_weight, # here commitment loss is sum of commitment loss and entropy penalty
            "encodings": all_indices, 
        }
        return x_recon, vq_output

    def encode_for_raw_features(self, x, scale_schedule, return_residual_norm_per_scale=False):
        is_image = x.ndim == 4
        if not is_image:
            B, C, T, H, W = x.shape
        else:
            B, C, H, W = x.shape
            T = 1

        enc_dtype = ptdtype[self.args.encoder_dtype]
        with torch.amp.autocast("cuda", dtype=enc_dtype):
            h, hs, hs_mid = self.encoder(x, return_hidden=True) # B C H W or B C T H W

        hs = [_h.detach() for _h in hs]
        hs_mid = [_h.detach() for _h in hs_mid]
        h = h.to(dtype=torch.float32)
        return h, hs, hs_mid
    
    def encode(self, x, scale_schedule, return_residual_norm_per_scale=False):
        h, hs, hs_mid = self.encode_for_raw_features(x, scale_schedule, return_residual_norm_per_scale)
        # Multiscale LFQ
        z, all_indices, all_bit_indices, residual_norm_per_scale, all_loss, var_input = self.quantizer(h, scale_schedule=scale_schedule, return_residual_norm_per_scale=return_residual_norm_per_scale)
        return h, z, all_indices, all_bit_indices, residual_norm_per_scale, var_input

    def decode(self, z):
        x_recon = self.decoder(z)
        x_recon = torch.clamp(x_recon, min=-1, max=1)
        return x_recon
    
    def decode_from_indices(self, all_indices, scale_schedule, label_type):
        summed_codes = 0
        for idx_Bl in all_indices:
            codes = self.quantizer.lfq.indices_to_codes(idx_Bl, label_type)
            summed_codes += F.interpolate(codes, size=scale_schedule[-1], mode=self.quantizer.z_interplote_up)
        assert summed_codes.shape[-3] == 1
        x_recon = self.decoder(summed_codes.squeeze(-3))
        x_recon = torch.clamp(x_recon, min=-1, max=1)
        return summed_codes, x_recon

    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = argparse.ArgumentParser(parents=[parent_parser], add_help=False)
        parser.add_argument("--flux_weight", type=float, default=0)
        parser.add_argument("--cycle_weight", type=float, default=0)
        parser.add_argument("--cycle_feat_weight", type=float, default=0)
        parser.add_argument("--cycle_gan_weight", type=float, default=0)
        parser.add_argument("--cycle_loop", type=int, default=0)
        parser.add_argument("--z_drop", type=float, default=0.)
        return parser