File size: 8,695 Bytes
32287b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import math
import os
import signal
import sys
import time
from typing import List, Optional, Tuple, Union

import torch
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
# from memory_profiler import profile

import infinity.utils.dist as dist
from infinity.utils import misc

class NullCtx:
    def __enter__(self):
        pass
    
    def __exit__(self, exc_type, exc_val, exc_tb):
        pass


def handle_timeout(signum, frame):
    raise TimeoutError('took too long')


def per_param_clip_grad_norm_(parameters, thresh: float, stable=False, fp=None) -> (float, float):
    skipped, max_grad = [], 0
    for pi, p in enumerate(parameters):
        if p.grad is not None:
            g = p.grad.data.norm(2).item() + 1e-7
            max_grad = max(max_grad, g)
            clip_coef = thresh / g
            if clip_coef < 1:
                if stable and clip_coef < 0.2:
                    skipped.append(clip_coef)
                    p.grad.data.mul_(0)     # todo NOTE: inf.mul_(0)==nan will shrink the scale ratio, but inf.zero_()==0 won't
                else:
                    p.grad.data.mul_(clip_coef)
    
    # if fp is not None: fp.write(f'[per_param_clip_grad_norm_:47] finished.\n'); fp.flush()
    return 0 if len(skipped) == 0 else math.log10(max(min(skipped), 1e-7)), max_grad


class AmpOptimizer:
    def __init__(
        self,
        model_name_3letters: str, mixed_precision: int,
        optimizer: torch.optim.Optimizer, model_maybe_fsdp: Union[torch.nn.Module, FSDP],
        r_accu: float, grad_clip: float, zero: int,
    ):
        self.enable_amp = mixed_precision > 0
        self.zero = zero
        if self.enable_amp:
            self.using_fp16_rather_bf16 = mixed_precision != 2
            self.max_sc = float(mixed_precision if mixed_precision > 128 else 32768)
            
            # todo: on both V100 and A100, torch.get_autocast_gpu_dtype() returns fp16, not bf16.
            self.amp_ctx = torch.autocast('cuda', enabled=True, dtype=torch.float16 if self.using_fp16_rather_bf16 else torch.bfloat16, cache_enabled=self.zero == 0)    # todo: cache_enabled=False
            if self.using_fp16_rather_bf16:
                self.scaler = torch.cuda.amp.GradScaler(init_scale=2. ** 11, growth_interval=1000)
            else:
                self.scaler = None
        else:
            self.using_fp16_rather_bf16 = True
            self.amp_ctx = NullCtx()
            self.scaler = None
        
        t = torch.zeros(dist.get_world_size())
        t[dist.get_rank()] = float(self.enable_amp)
        dist.allreduce(t)
        assert round(t.sum().item()) in {0, dist.get_world_size()}, f'enable_amp: {t}'
        
        t = torch.zeros(dist.get_world_size())
        t[dist.get_rank()] = float(self.using_fp16_rather_bf16)
        dist.allreduce(t)
        assert round(t.sum().item()) in {0, dist.get_world_size()}, f'using_fp16_rather_bf16: {t}'
        
        self.model_name_3letters = model_name_3letters
        self.optimizer, self.model_maybe_fsdp = optimizer, model_maybe_fsdp
        self.r_accu = r_accu
        
        self.paras = self.names = ...    # todo: solve EMA-related codes
        
        self.grad_clip, self.grad_clip_we = grad_clip, 0    # todo: disable wclip
        if self.grad_clip > 100:
            self.grad_clip %= 100
            self.per_param = True
        else:
            self.per_param = False
        self.per_param = False          # todo: disable wclip
        
        self.early_clipping = grad_clip > 0 and not hasattr(optimizer, 'global_grad_norm')
        self.late_clipping = grad_clip > 0 and hasattr(optimizer, 'global_grad_norm')   # deepspeed's optimizer
        
        self.fp = None
        self.last_orig_norm: torch.Tensor = torch.tensor(0.1)
    
    @torch.no_grad()
    def log_param(self, ep: int):
        if self.zero == 0:
            for name, values in get_param_for_log(self.model_name_3letters, self.model_maybe_fsdp.named_parameters()).items():
                values: List[float]
                if len(values) == 1:    # e.g., cls token will only have one value
                    values.append(values[0])
        else:
            ...
            # todo: log params
    
    # @profile(precision=4, stream=open('amp_sc.log', 'w+'))
    def backward_clip_step(
        self, ep: int, it: int, g_it: int, stepping: bool, logging_params: bool, loss: torch.Tensor, clip_decay_ratio=1, stable=False,
    ) -> Tuple[torch.Tensor, Optional[float]]:
        # backward
        loss = loss.mul(self.r_accu)   # r_accu == 1.0 / n_gradient_accumulation
        orig_norm = scaler_sc = None
        # if self.fp is not None:
        #     if g_it % 20 == 0: self.fp.seek(0); self.fp.truncate(0)
        if self.scaler is not None:
            self.scaler.scale(loss).backward(retain_graph=False, create_graph=False)  # retain_graph=retain_graph, create_graph=create_graph
        else:
            loss.backward(retain_graph=False, create_graph=False)
        # if self.fp is not None: self.fp.write(f'[backward_clip_step:131] [it{it}, g_it{g_it}] after backward\n'); self.fp.flush()
        
        # clip gradients then step optimizer
        if stepping:
            if self.scaler is not None: self.scaler.unscale_(self.optimizer)    # now the gradient can be correctly got
            # if self.fp is not None: self.fp.write(f'[backward_clip_step:137] [it{it}, g_it{g_it}] after scaler.unscale_\n'); self.fp.flush()
            
            skipped, orig_norm = 0, self.last_orig_norm
            # try:
            if self.fp is not None:
                if g_it % 10 == 0: self.fp.seek(0); self.fp.truncate(0)
                self.fp.write(f'<ep{ep} it{it} {g_it}>\n'); self.fp.flush()
            if self.early_clipping:
                c = self.grad_clip * clip_decay_ratio
                if self.zero:
                    orig_norm: Optional[torch.Tensor] = self.model_maybe_fsdp.clip_grad_norm_(c)
                else:
                    orig_norm: Optional[torch.Tensor] = torch.nn.utils.clip_grad_norm_(self.model_maybe_fsdp.parameters(), c)
            
            # if self.fp is not None: self.fp.write(f'[backward_clip_step:175] [it{it}, g_it{g_it}] before opt step\n'); self.fp.flush()
            if self.scaler is not None:
                self.scaler: torch.cuda.amp.GradScaler
                if self.zero:
                    # synchronize found_inf_per_device before calling step, so that even if only some ranks found inf on their sharded params, all other ranks will know
                    # otherwise, when saving FSDP optimizer state, it will cause AssertionError saying "Different ranks have different values for step."
                    for optimizer_state in self.scaler._per_optimizer_states.values():
                        for t in optimizer_state['found_inf_per_device'].values():
                            dist.allreduce(t)   # ideally, each rank only has one single t; so no need to use async allreduce
                
                self.scaler.step(self.optimizer)
                scaler_sc: Optional[float] = self.scaler.get_scale()
                if scaler_sc > self.max_sc: # fp16 will overflow when >65536, so multiply 32768 could be dangerous
                    # print(f'[fp16 scaling] too large loss scale {scaler_sc}! (clip to {self.max_sc:g})')
                    self.scaler.update(new_scale=self.max_sc)
                else:
                    self.scaler.update()
                try:
                    scaler_sc = float(math.log2(scaler_sc))
                except Exception as e:
                    print(f'[scaler_sc = {scaler_sc}]\n' * 15, flush=True)
                    time.sleep(1)
                    print(f'[scaler_sc = {scaler_sc}]\n' * 15, flush=True)
                    raise e
            else:
                self.optimizer.step()
            
            if self.late_clipping:
                orig_norm: Optional[torch.Tensor] = self.optimizer.global_grad_norm
            self.last_orig_norm = orig_norm
            # no zero_grad calling here, gonna log those gradients!
        return orig_norm, scaler_sc
    
    def state_dict(self):
        return {
            'optimizer': self.optimizer.state_dict()
        } if self.scaler is None else {
            'scaler': self.scaler.state_dict(),
            'optimizer': self.optimizer.state_dict()
        }
    
    def load_state_dict(self, state, strict=True):
        if self.scaler is not None:
            try: self.scaler.load_state_dict(state['scaler'])
            except Exception as e: print(f'[fp16 load_state_dict err] {e}')
        self.optimizer.load_state_dict(state['optimizer'])