Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,512 Bytes
32287b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import re
import torch
import os
import traceback
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, T5EncoderModel
import ftfy
import html
from bs4 import BeautifulSoup
import urllib.parse as ul
class T5Embedder:
available_models = ['t5-v1_1-xxl']
bad_punct_regex = re.compile(r'['+'#®•©™&@·º½¾¿¡§~'+'\)'+'\('+'\]'+'\['+'\}'+'\{'+'\|'+'\\'+'\/'+'\*' + r']{1,}') # noqa
def __init__(self, device, dir_or_name='t5-v1_1-xxl', *, local_cache=False, cache_dir=None, hf_token=None, use_text_preprocessing=True,
t5_model_kwargs=None, torch_dtype=torch.bfloat16, use_offload_folder=None, model_max_length=512, padding="max_length", clean_caption_func_name="clean_caption"):
self.device = torch.device(device)
self.torch_dtype = torch_dtype
if t5_model_kwargs is None:
t5_model_kwargs = {'low_cpu_mem_usage': True, 'torch_dtype': self.torch_dtype}
if use_offload_folder is not None:
t5_model_kwargs['offload_folder'] = use_offload_folder
t5_model_kwargs['device_map'] = {
'shared': self.device,
'encoder.embed_tokens': self.device,
'encoder.block.0': self.device,
'encoder.block.1': self.device,
'encoder.block.2': self.device,
'encoder.block.3': self.device,
'encoder.block.4': self.device,
'encoder.block.5': self.device,
'encoder.block.6': self.device,
'encoder.block.7': self.device,
'encoder.block.8': self.device,
'encoder.block.9': self.device,
'encoder.block.10': self.device,
'encoder.block.11': self.device,
'encoder.block.12': 'disk',
'encoder.block.13': 'disk',
'encoder.block.14': 'disk',
'encoder.block.15': 'disk',
'encoder.block.16': 'disk',
'encoder.block.17': 'disk',
'encoder.block.18': 'disk',
'encoder.block.19': 'disk',
'encoder.block.20': 'disk',
'encoder.block.21': 'disk',
'encoder.block.22': 'disk',
'encoder.block.23': 'disk',
'encoder.final_layer_norm': 'disk',
'encoder.dropout': 'disk',
}
else:
t5_model_kwargs['device_map'] = {'shared': self.device, 'encoder': self.device}
self.use_text_preprocessing = use_text_preprocessing
self.hf_token = hf_token
self.cache_dir = cache_dir or os.path.expanduser('~/.cache/IF_')
self.dir_or_name = dir_or_name
tokenizer_path, path = dir_or_name, dir_or_name
if local_cache:
cache_dir = os.path.join(self.cache_dir, dir_or_name)
tokenizer_path, path = cache_dir, cache_dir
elif dir_or_name in self.available_models:
cache_dir = os.path.join(self.cache_dir, dir_or_name)
for filename in [
'config.json', 'special_tokens_map.json', 'spiece.model', 'tokenizer_config.json',
'pytorch_model.bin.index.json', 'pytorch_model-00001-of-00002.bin', 'pytorch_model-00002-of-00002.bin'
]:
hf_hub_download(repo_id=f'DeepFloyd/{dir_or_name}', filename=filename, cache_dir=cache_dir,
force_filename=filename, token=self.hf_token)
tokenizer_path, path = cache_dir, cache_dir
else:
cache_dir = os.path.join(self.cache_dir, 't5-v1_1-xxl')
for filename in [
'config.json', 'special_tokens_map.json', 'spiece.model', 'tokenizer_config.json',
]:
hf_hub_download(repo_id='DeepFloyd/t5-v1_1-xxl', filename=filename, cache_dir=cache_dir,
force_filename=filename, token=self.hf_token)
tokenizer_path = cache_dir
print(f"Loading T5 from {tokenizer_path}")
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
self.model = T5EncoderModel.from_pretrained(path, **t5_model_kwargs).eval()
self.model_max_length = model_max_length
self.padding = padding
self.clean_caption_func = self.__getattribute__(clean_caption_func_name)
@torch.no_grad()
def get_text_embeddings(self, texts):
import time
start_time = time.time()
texts = [self.text_preprocessing(text) for text in texts]
# print("text_preprocessing: ", time.time() - start_time)
text_tokens_and_mask = self.tokenizer(
texts,
max_length=self.model_max_length,
padding=self.padding,
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors='pt'
)
# print("tokenizer: ", time.time() - start_time)
text_tokens_and_mask['input_ids'] = text_tokens_and_mask['input_ids'].to(self.device)
text_tokens_and_mask['attention_mask'] = text_tokens_and_mask['attention_mask'].to(self.device)
with torch.no_grad():
text_encoder_embs = self.model(
input_ids=text_tokens_and_mask['input_ids'],
attention_mask=text_tokens_and_mask['attention_mask'],
)['last_hidden_state'].detach()
# print("model: ", time.time() - start_time)
return text_encoder_embs, text_tokens_and_mask['attention_mask'], text_tokens_and_mask['input_ids'], texts
def text_preprocessing(self, text):
if self.use_text_preprocessing:
try:
# The exact text cleaning as was in the training stage:
text = self.clean_caption_func(text)
text = self.clean_caption_func(text)
return text
except Exception as e:
print(f"Error in text preprocessing: {e} with text: {text}")
print(traceback.format_exc())
return text
else:
return text.lower().strip()
@staticmethod
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def clean_caption(self, caption):
caption = str(caption)
caption = ul.unquote_plus(caption)
caption = caption.strip().lower()
caption = re.sub('<person>', 'person', caption)
# urls:
caption = re.sub(
r'\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))', # noqa
'', caption) # regex for urls
caption = re.sub(
r'\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))', # noqa
'', caption) # regex for urls
# html:
try:
caption = BeautifulSoup(caption, features='html.parser').text
except Exception as e:
print(f"Error parsing caption:{caption} with html.parser: {e}")
# @<nickname>
caption = re.sub(r'@[\w\d]+\b', '', caption)
# 31C0—31EF CJK Strokes
# 31F0—31FF Katakana Phonetic Extensions
# 3200—32FF Enclosed CJK Letters and Months
# 3300—33FF CJK Compatibility
# 3400—4DBF CJK Unified Ideographs Extension A
# 4DC0—4DFF Yijing Hexagram Symbols
# 4E00—9FFF CJK Unified Ideographs
caption = re.sub(r'[\u31c0-\u31ef]+', '', caption)
caption = re.sub(r'[\u31f0-\u31ff]+', '', caption)
caption = re.sub(r'[\u3200-\u32ff]+', '', caption)
caption = re.sub(r'[\u3300-\u33ff]+', '', caption)
caption = re.sub(r'[\u3400-\u4dbf]+', '', caption)
caption = re.sub(r'[\u4dc0-\u4dff]+', '', caption)
caption = re.sub(r'[\u4e00-\u9fff]+', '', caption)
#######################################################
# все виды тире / all types of dash --> "-"
caption = re.sub(
r'[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+', # noqa
'-', caption)
# кавычки к одному стандарту
caption = re.sub(r'[`´«»“”¨]', '"', caption)
caption = re.sub(r'[‘’]', "'", caption)
# "
caption = re.sub(r'"?', '', caption)
# &
caption = re.sub(r'&', '', caption)
# ip adresses:
caption = re.sub(r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}', ' ', caption)
# article ids:
caption = re.sub(r'\d:\d\d\s+$', '', caption)
# \n
caption = re.sub(r'\\n', ' ', caption)
# "#123"
caption = re.sub(r'#\d{1,3}\b', '', caption)
# "#12345.."
caption = re.sub(r'#\d{5,}\b', '', caption)
# "123456.."
caption = re.sub(r'\b\d{6,}\b', '', caption)
# filenames:
caption = re.sub(r'[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption)
#
caption = re.sub(r'[\"\']{2,}', r'"', caption) # """AUSVERKAUFT"""
caption = re.sub(r'[\.]{2,}', r' ', caption) # """AUSVERKAUFT"""
caption = re.sub(self.bad_punct_regex, r' ', caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
caption = re.sub(r'\s+\.\s+', r' ', caption) # " . "
# this-is-my-cute-cat / this_is_my_cute_cat
regex2 = re.compile(r'(?:\-|\_)')
if len(re.findall(regex2, caption)) > 3:
caption = re.sub(regex2, ' ', caption)
caption = self.basic_clean(caption)
caption = re.sub(r'\b[a-zA-Z]{1,3}\d{3,15}\b', '', caption) # jc6640
caption = re.sub(r'\b[a-zA-Z]+\d+[a-zA-Z]+\b', '', caption) # jc6640vc
caption = re.sub(r'\b\d+[a-zA-Z]+\d+\b', '', caption) # 6640vc231
caption = re.sub(r'(worldwide\s+)?(free\s+)?shipping', '', caption)
caption = re.sub(r'(free\s)?download(\sfree)?', '', caption)
caption = re.sub(r'\bclick\b\s(?:for|on)\s\w+', '', caption)
caption = re.sub(r'\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?', '', caption)
caption = re.sub(r'\bpage\s+\d+\b', '', caption)
caption = re.sub(r'\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b', r' ', caption) # j2d1a2a...
caption = re.sub(r'\b\d+\.?\d*[xх×]\d+\.?\d*\b', '', caption)
caption = re.sub(r'\b\s+\:\s+', r': ', caption)
caption = re.sub(r'(\D[,\./])\b', r'\1 ', caption)
caption = re.sub(r'\s+', ' ', caption)
caption.strip()
caption = re.sub(r'^[\"\']([\w\W]+)[\"\']$', r'\1', caption)
caption = re.sub(r'^[\'\_,\-\:;]', r'', caption)
caption = re.sub(r'[\'\_,\-\:\-\+]$', r'', caption)
caption = re.sub(r'^\.\S+$', '', caption)
return caption.strip()
def clean_caption_simplify(self, caption):
# 将 caption 转换为字符串
caption = str(caption)
# 解码 URL 编码的字符串
caption = ul.unquote_plus(caption)
# 去除首尾空格并转换为小写
caption = caption.strip().lower()
# 将 '<person>' 替换为 'person'
caption = re.sub('<person>', 'person', caption)
# 移除 URL
caption = re.sub(
r'\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))',
'', caption) # 匹配以 http:// 或 https:// 开头的 URL
caption = re.sub(
r'\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))',
'', caption) # 匹配以 www. 开头的 URL
# 解析 HTML 并删除 HTML 标签
caption = BeautifulSoup(caption, features='html.parser').text
# 移除 @nickname 标签
caption = re.sub(r'@[\w\d]+\b', '', caption)
# 移除特定 Unicode 范围的字符:CJK 相关字符
caption = re.sub(r'[\u31c0-\u31ef]+', '', caption) # CJK 笔划
caption = re.sub(r'[\u31f0-\u31ff]+', '', caption) # 片假名语音扩展
caption = re.sub(r'[\u3200-\u32ff]+', '', caption) # 圆括号中的 CJK 字母和月份
caption = re.sub(r'[\u3300-\u33ff]+', '', caption) # CJK 兼容性
caption = re.sub(r'[\u3400-\u4dbf]+', '', caption) # CJK 统一表意符号扩展 A
caption = re.sub(r'[\u4dc0-\u4dff]+', '', caption) # 易经卦象符号
caption = re.sub(r'[\u4e00-\u9fff]+', '', caption) # CJK 统一表意符号
# 所有类型的破折号替换为 "-"
caption = re.sub(
r'[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+',
'-', caption) # 匹配各种 Unicode 破折号
# 统一不同类型的引号
caption = re.sub(r'[`´«»“”¨]', '"', caption) # 将各种引号替换为标准引号
caption = re.sub(r'[‘’]', "'", caption) # 将左单引号和右单引号替换为标准单引号
# 移除 " 和 &
caption = re.sub(r'"?', '', caption) # 移除 HTML 实体 "
caption = re.sub(r'&', '', caption) # 移除 HTML 实体 &
# 移除 IP 地址
caption = re.sub(r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}', ' ', caption) # 匹配 IPv4 地址
# 移除文章 ID 格式
caption = re.sub(r'\d:\d\d\s+$', '', caption) # 匹配类似 '1:23 ' 的格式
# 移除 \n 转义字符
caption = re.sub(r'\\n', ' ', caption)
# 移除特定格式的标签
# caption = re.sub(r'#\d{1,3}\b', '', caption) # #123 移除 # 加 1 到 3 位数字的标签
# caption = re.sub(r'#\d{5,}\b', '', caption) # #12345.. 移除 # 加 5 位或以上数字的标签
# caption = re.sub(r'\b\d{6,}\b', '', caption) # 123456.. 移除 6 位或以上的纯数字
# 移除文件名
caption = re.sub(r'[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption) # 匹配图片和视频文件,匹配完整的文件名,包括文件名本身和扩展名。
# 简化多重引号和点
caption = re.sub(r'[\"\']{2,}', r'"', caption) # 连续的双引号替换为一个双引号
caption = re.sub(r'[\.]{2,}', r' ', caption) # 连续的点替换为空格
# 使用通用标点正则表达式清理无效标点
caption = re.sub(self.bad_punct_regex, r' ', caption) # 自定义的无效标点正则表达式
caption = re.sub(r'\s+\.\s+', r' ', caption) # 移除空格和点
# 过滤带有太多破折号或下划线的文本
regex2 = re.compile(r'(?:\-|\_)')
if len(re.findall(regex2, caption)) > 3:
caption = re.sub(regex2, ' ', caption)
# 基本清理
caption = self.basic_clean(caption)
# 移除特定格式的短字符串
# caption = re.sub(r'\b[a-zA-Z]{1,3}\d{3,15}\b', '', caption) # 匹配三个字母以下加三个数字以上的字符串
# caption = re.sub(r'\b[a-zA-Z]+\d+[a-zA-Z]+\b', '', caption) # 匹配字母数字混合的字符串
# caption = re.sub(r'\b\d+[a-zA-Z]+\d+\b', '', caption) # 匹配数字字母混合的字符串
# 移除特定的广告或指令性短语
# caption = re.sub(r'(worldwide\s+)?(free\s+)?shipping', '', caption) # 匹配 'worldwide free shipping', 'free shipping'
# caption = re.sub(r'(free\s)?download(\sfree)?', '', caption) # 匹配 'free download', 'download free'
# caption = re.sub(r'\bclick\b\s(?:for|on)\s\w+', '', caption) # 匹配 'click for ...' 或 'click on ...'
# caption = re.sub(r'\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?', '', caption) # 匹配文件扩展名,匹配独立的扩展名或扩展名后可能跟随的特定词汇的场景
# caption = re.sub(r'\bpage\s+\d+\b', '', caption) # 匹配 'page 123'
# 移除复杂模式的字符串
# caption = re.sub(r'\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b', r' ', caption) # 123A456B789
# 移除特定的矩形标识符
caption = re.sub(r'\b\d+\.?\d*[xх×]\d+\.?\d*\b', '', caption)
# 修复多余的空白和标点
caption = re.sub(r'\b\s+\:\s+', r': ', caption)
caption = re.sub(r'(\D[,\./])\b', r'\1 ', caption)
caption = re.sub(r'\s+', ' ', caption)
# 去除首尾的多余字符
caption.strip()
caption = re.sub(r'^[\"\']([\w\W]+)[\"\']$', r'\1', caption)
caption = re.sub(r'^[\'\_,\-\:;]', r'', caption)
caption = re.sub(r'[\'\_,\-\:\-\+]$', r'', caption)
caption = re.sub(r'^\.\S+$', '', caption)
return caption.strip()
|