File size: 9,095 Bytes
32287b3
 
 
f7f1ca1
32287b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import argparse
import torch

from models.bsq_vae.flux_vqgan import AutoEncoder

def load_cnn(model, state_dict, prefix, expand=False, use_linear=False):
    delete_keys = []
    loaded_keys = []
    for key in state_dict:
        if key.startswith(prefix):
            _key = key[len(prefix):]
            if _key in model.state_dict():
                # load nn.Conv2d or nn.Linear to nn.Linear
                if use_linear and (".q.weight" in key or ".k.weight" in key or ".v.weight" in key or ".proj_out.weight" in key):
                    load_weights = state_dict[key].squeeze()
                elif _key.endswith(".conv.weight") and expand:
                    if model.state_dict()[_key].shape == state_dict[key].shape:
                        # 2D cnn to 2D cnn
                        load_weights = state_dict[key]
                    else:
                        # 2D cnn to 3D cnn
                        _expand_dim = model.state_dict()[_key].shape[2]
                        load_weights = state_dict[key].unsqueeze(2).repeat(1, 1, _expand_dim, 1, 1)
                else:
                    load_weights = state_dict[key]
                model.state_dict()[_key].copy_(load_weights)
                delete_keys.append(key)
                loaded_keys.append(prefix+_key)
            # load nn.Conv2d to Conv class
            conv_list = ["conv"] if use_linear else ["conv", ".q.", ".k.", ".v.", ".proj_out.", ".nin_shortcut."]
            if any(k in _key for k in conv_list):
                if _key.endswith(".weight"):
                    conv_key = _key.replace(".weight", ".conv.weight")
                    if conv_key and conv_key in model.state_dict():
                        if model.state_dict()[conv_key].shape == state_dict[key].shape:
                            # 2D cnn to 2D cnn
                            load_weights = state_dict[key]
                        else:
                            # 2D cnn to 3D cnn
                            _expand_dim = model.state_dict()[conv_key].shape[2]
                            load_weights = state_dict[key].unsqueeze(2).repeat(1, 1, _expand_dim, 1, 1)
                        model.state_dict()[conv_key].copy_(load_weights)
                        delete_keys.append(key)
                        loaded_keys.append(prefix+conv_key)
                if _key.endswith(".bias"):
                    conv_key = _key.replace(".bias", ".conv.bias")
                    if conv_key and conv_key in model.state_dict():
                        model.state_dict()[conv_key].copy_(state_dict[key])
                        delete_keys.append(key)
                        loaded_keys.append(prefix+conv_key)
            # load nn.GroupNorm to Normalize class
            if "norm" in _key:
                if _key.endswith(".weight"):
                    norm_key = _key.replace(".weight", ".norm.weight")
                    if norm_key and norm_key in model.state_dict():
                        model.state_dict()[norm_key].copy_(state_dict[key])
                        delete_keys.append(key)
                        loaded_keys.append(prefix+norm_key)
                if _key.endswith(".bias"):
                    norm_key = _key.replace(".bias", ".norm.bias")
                    if norm_key and norm_key in model.state_dict():
                        model.state_dict()[norm_key].copy_(state_dict[key])
                        delete_keys.append(key)
                        loaded_keys.append(prefix+norm_key)
            
    for key in delete_keys:
        del state_dict[key]

    return model, state_dict, loaded_keys


def vae_model(vqgan_ckpt, schedule_mode, codebook_dim, codebook_size, test_mode=True, patch_size=16, encoder_ch_mult=[1, 2, 4, 4, 4], decoder_ch_mult=[1, 2, 4, 4, 4],):
    args=argparse.Namespace(
        vqgan_ckpt=vqgan_ckpt,
        sd_ckpt=None,
        inference_type='image',
        save='./imagenet_val_bsq',
        save_prediction=True,
        image_recon4video=False,
        junke_old=False,
        device='cuda',
        max_steps=1000000.0,
        log_every=1,
        visu_every=1000,
        ckpt_every=1000,
        default_root_dir='',
        compile='no',
        ema='no',
        lr=0.0001,
        beta1=0.9,
        beta2=0.95,
        warmup_steps=0,
        optim_type='Adam',
        disc_optim_type=None,
        lr_min=0.0,
        warmup_lr_init=0.0,
        max_grad_norm=1.0,
        max_grad_norm_disc=1.0,
        disable_sch=False,
        patch_size=patch_size,
        temporal_patch_size=4,
        embedding_dim=256,
        codebook_dim=codebook_dim,
        num_quantizers=8,
        quantizer_type='MultiScaleBSQ',
        use_vae=False,
        use_freq_enc=False,
        use_freq_dec=False,
        preserve_norm=False,
        ln_before_quant=False,
        ln_init_by_sqrt=False,
        use_pxsf=False,
        new_quant=True,
        use_decay_factor=False,
        mask_out=False,
        use_stochastic_depth=False,
        drop_rate=0.0,
        schedule_mode=schedule_mode,
        lr_drop=None,
        lr_drop_rate=0.1,
        keep_first_quant=False,
        keep_last_quant=False,
        remove_residual_detach=False,
        use_out_phi=False,
        use_out_phi_res=False,
        use_lecam_reg=False,
        lecam_weight=0.05,
        perceptual_model='vgg16',
        base_ch_disc=64,
        random_flip=False,
        flip_prob=0.5,
        flip_mode='stochastic',
        max_flip_lvl=1,
        not_load_optimizer=False,
        use_lecam_reg_zero=False,
        freeze_encoder=False,
        rm_downsample=False,
        random_flip_1lvl=False,
        flip_lvl_idx=0,
        drop_when_test=False,
        drop_lvl_idx=0,
        drop_lvl_num=1,
        disc_version='v1',
        magvit_disc=False,
        sigmoid_in_disc=False,
        activation_in_disc='leaky_relu',
        apply_blur=False,
        apply_noise=False,
        dis_warmup_steps=0,
        dis_lr_multiplier=1.0,
        dis_minlr_multiplier=False,
        disc_channels=64,
        disc_layers=3,
        discriminator_iter_start=0,
        disc_pretrain_iter=0,
        disc_optim_steps=1,
        disc_warmup=0,
        disc_pool='no',
        disc_pool_size=1000,
        advanced_disc=False,
        recon_loss_type='l1',
        video_perceptual_weight=0.0,
        image_gan_weight=1.0,
        video_gan_weight=1.0,
        image_disc_weight=0.0,
        video_disc_weight=0.0,
        l1_weight=4.0,
        gan_feat_weight=0.0,
        perceptual_weight=0.0,
        kl_weight=0.0,
        lfq_weight=0.0,
        entropy_loss_weight=0.1,
        commitment_loss_weight=0.25,
        diversity_gamma=1,
        norm_type='group',
        disc_loss_type='hinge',
        use_checkpoint=False,
        precision='fp32',
        encoder_dtype='fp32',
        upcast_attention='',
        upcast_tf32=False,
        tokenizer='flux',
        pretrained=None,
        pretrained_mode='full',
        inflation_pe=False,
        init_vgen='no',
        no_init_idis=False,
        init_idis='keep',
        init_vdis='no',
        enable_nan_detector=False,
        turn_on_profiler=False,
        profiler_scheduler_wait_steps=10,
        debug=True,
        video_logger=False,
        bytenas='',
        username='',
        seed=1234,
        vq_to_vae=False,
        load_not_strict=False,
        zero=0,
        bucket_cap_mb=40,
        manual_gc_interval=1000,
        data_path=[''],
        data_type=[''],
        dataset_list=['imagenet'],
        fps=-1,
        dataaug='resizecrop',
        multi_resolution=False,
        random_bucket_ratio=0.0,
        sequence_length=16,
        resolution=[256, 256],
        batch_size=[1],
        num_workers=0,
        image_channels=3,
        codebook_size=codebook_size,
        codebook_l2_norm=True,
        codebook_show_usage=True,
        commit_loss_beta=0.25,
        entropy_loss_ratio=0.0,
        base_ch=128,
        num_res_blocks=2,
        encoder_ch_mult=encoder_ch_mult,
        decoder_ch_mult=decoder_ch_mult,
        dropout_p=0.0,
        cnn_type='2d',
        cnn_version='v1',
        conv_in_out_2d='no',
        conv_inner_2d='no',
        res_conv_2d='no',
        cnn_attention='no',
        cnn_norm_axis='spatial',
        flux_weight=0,
        cycle_weight=0,
        cycle_feat_weight=0,
        cycle_gan_weight=0,
        cycle_loop=0,
        z_drop=0.0)
    
    vae = AutoEncoder(args)
    use_vae = vae.use_vae
    if not use_vae:
        num_codes = args.codebook_size
    if isinstance(vqgan_ckpt, str):
        state_dict = torch.load(args.vqgan_ckpt, map_location=torch.device("cpu"), weights_only=True)
    else:
        state_dict = args.vqgan_ckpt
    if state_dict:
        if args.ema == "yes":
            vae, new_state_dict, loaded_keys = load_cnn(vae, state_dict["ema"], prefix="", expand=False)
        else:
            vae, new_state_dict, loaded_keys = load_cnn(vae, state_dict["vae"], prefix="", expand=False)
    if test_mode:
        vae.eval()
        [p.requires_grad_(False) for p in vae.parameters()]
    return vae