Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,970 Bytes
1ce0fc2 32287b3 836dd96 32287b3 f7f1ca1 32287b3 836dd96 32287b3 836dd96 32287b3 f7f1ca1 32287b3 836dd96 32287b3 f7f1ca1 32287b3 041b736 32287b3 836dd96 32287b3 f7f1ca1 836dd96 f7f1ca1 32287b3 f7f1ca1 32287b3 f7f1ca1 836dd96 f7f1ca1 32287b3 836dd96 32287b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import os.path as osp
import time
import hashlib
import argparse
import shutil
import re
import random
from pathlib import Path
from typing import List
import json
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image, ImageEnhance
import PIL.Image as PImage
from torchvision.transforms.functional import to_tensor
from transformers import AutoTokenizer, T5EncoderModel, T5TokenizerFast
from huggingface_hub import hf_hub_download
import gradio as gr
import spaces
from models.infinity import Infinity
from models.basic import *
from utils.dynamic_resolution import dynamic_resolution_h_w, h_div_w_templates
from gradio_client import Client
torch._dynamo.config.cache_size_limit = 64
client = Client("Qwen/Qwen2.5-72B-Instruct")
# Define a function to download weights if not present
def download_infinity_weights(weights_path):
try:
model_file = weights_path / 'infinity_2b_reg.pth'
if not model_file.exists():
hf_hub_download(repo_id="FoundationVision/Infinity", filename="infinity_2b_reg.pth", local_dir=str(weights_path))
vae_file = weights_path / 'infinity_vae_d32reg.pth'
if not vae_file.exists():
hf_hub_download(repo_id="FoundationVision/Infinity", filename="infinity_vae_d32reg.pth", local_dir=str(weights_path))
except Exception as e:
print(f"Error downloading weights: {e}")
def extract_key_val(text):
pattern = r'<(.+?):(.+?)>'
matches = re.findall(pattern, text)
key_val = {}
for match in matches:
key_val[match[0]] = match[1].lstrip()
return key_val
def encode_prompt(text_tokenizer, text_encoder, prompt, enable_positive_prompt=False):
if enable_positive_prompt:
print(f'before positive_prompt aug: {prompt}')
prompt = aug_with_positive_prompt(prompt)
print(f'after positive_prompt aug: {prompt}')
print(f'prompt={prompt}')
captions = [prompt]
tokens = text_tokenizer(text=captions, max_length=512, padding='max_length', truncation=True, return_tensors='pt') # todo: put this into dataset
input_ids = tokens.input_ids.cuda(non_blocking=True)
mask = tokens.attention_mask.cuda(non_blocking=True)
text_features = text_encoder(input_ids=input_ids, attention_mask=mask)['last_hidden_state'].float()
lens: List[int] = mask.sum(dim=-1).tolist()
cu_seqlens_k = F.pad(mask.sum(dim=-1).to(dtype=torch.int32).cumsum_(0), (1, 0))
Ltext = max(lens)
kv_compact = []
for len_i, feat_i in zip(lens, text_features.unbind(0)):
kv_compact.append(feat_i[:len_i])
kv_compact = torch.cat(kv_compact, dim=0)
text_cond_tuple = (kv_compact, lens, cu_seqlens_k, Ltext)
return text_cond_tuple
def aug_with_positive_prompt(prompt):
for key in ['man', 'woman', 'men', 'women', 'boy', 'girl', 'child', 'person', 'human', 'adult', 'teenager', 'employee',
'employer', 'worker', 'mother', 'father', 'sister', 'brother', 'grandmother', 'grandfather', 'son', 'daughter']:
if key in prompt:
prompt = prompt + '. very smooth faces, good looking faces, face to the camera, perfect facial features'
break
return prompt
def enhance_image(image):
for t in range(1):
contrast_image = image.copy()
contrast_enhancer = ImageEnhance.Contrast(contrast_image)
contrast_image = contrast_enhancer.enhance(1.05) # 增强对比度
color_image = contrast_image.copy()
color_enhancer = ImageEnhance.Color(color_image)
color_image = color_enhancer.enhance(1.05) # 增强饱和度
return color_image
def gen_one_img(
infinity_test,
vae,
text_tokenizer,
text_encoder,
prompt,
cfg_list=[],
tau_list=[],
negative_prompt='',
scale_schedule=None,
top_k=900,
top_p=0.97,
cfg_sc=3,
cfg_exp_k=0.0,
cfg_insertion_layer=-5,
vae_type=0,
gumbel=0,
softmax_merge_topk=-1,
gt_leak=-1,
gt_ls_Bl=None,
g_seed=None,
sampling_per_bits=1,
enable_positive_prompt=0,
):
sstt = time.time()
if not isinstance(cfg_list, list):
cfg_list = [cfg_list] * len(scale_schedule)
if not isinstance(tau_list, list):
tau_list = [tau_list] * len(scale_schedule)
text_cond_tuple = encode_prompt(text_tokenizer, text_encoder, prompt, enable_positive_prompt)
if negative_prompt:
negative_label_B_or_BLT = encode_prompt(text_tokenizer, text_encoder, negative_prompt)
else:
negative_label_B_or_BLT = None
print(f'cfg: {cfg_list}, tau: {tau_list}')
with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16, cache_enabled=True):
stt = time.time()
_, _, img_list = infinity_test.autoregressive_infer_cfg(
vae=vae,
scale_schedule=scale_schedule,
label_B_or_BLT=text_cond_tuple, g_seed=g_seed,
B=1, negative_label_B_or_BLT=negative_label_B_or_BLT, force_gt_Bhw=None,
cfg_sc=cfg_sc, cfg_list=cfg_list, tau_list=tau_list, top_k=top_k, top_p=top_p,
returns_vemb=1, ratio_Bl1=None, gumbel=gumbel, norm_cfg=False,
cfg_exp_k=cfg_exp_k, cfg_insertion_layer=cfg_insertion_layer,
vae_type=vae_type, softmax_merge_topk=softmax_merge_topk,
ret_img=True, trunk_scale=1000,
gt_leak=gt_leak, gt_ls_Bl=gt_ls_Bl, inference_mode=True,
sampling_per_bits=sampling_per_bits,
)
print(f"cost: {time.time() - sstt}, infinity cost={time.time() - stt}")
img = img_list[0]
return img
def get_prompt_id(prompt):
md5 = hashlib.md5()
md5.update(prompt.encode('utf-8'))
prompt_id = md5.hexdigest()
return prompt_id
def save_slim_model(infinity_model_path, save_file=None, device='cpu', key='gpt_fsdp'):
print('[Save slim model]')
full_ckpt = torch.load(infinity_model_path, map_location=device)
infinity_slim = full_ckpt['trainer'][key]
# ema_state_dict = cpu_d['trainer'].get('gpt_ema_fsdp', state_dict)
if not save_file:
save_file = osp.splitext(infinity_model_path)[0] + '-slim.pth'
print(f'Save to {save_file}')
torch.save(infinity_slim, save_file)
print('[Save slim model] done')
return save_file
def load_tokenizer(t5_path =''):
print(f'[Loading tokenizer and text encoder]')
text_tokenizer: T5TokenizerFast = AutoTokenizer.from_pretrained(t5_path, revision=None, legacy=True)
text_tokenizer.model_max_length = 512
text_encoder: T5EncoderModel = T5EncoderModel.from_pretrained(t5_path, torch_dtype=torch.float16)
text_encoder.to('cuda')
text_encoder.eval()
text_encoder.requires_grad_(False)
return text_tokenizer, text_encoder
def load_infinity(
rope2d_each_sa_layer,
rope2d_normalized_by_hw,
use_scale_schedule_embedding,
pn,
use_bit_label,
add_lvl_embeding_only_first_block,
model_path='',
scale_schedule=None,
vae=None,
device='cuda',
model_kwargs=None,
text_channels=2048,
apply_spatial_patchify=0,
use_flex_attn=False,
bf16=False,
):
print(f'[Loading Infinity]')
text_maxlen = 512
with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16, cache_enabled=True), torch.no_grad():
infinity_test: Infinity = Infinity(
vae_local=vae, text_channels=text_channels, text_maxlen=text_maxlen,
shared_aln=True, raw_scale_schedule=scale_schedule,
checkpointing='full-block',
customized_flash_attn=False,
fused_norm=True,
pad_to_multiplier=128,
use_flex_attn=use_flex_attn,
add_lvl_embeding_only_first_block=add_lvl_embeding_only_first_block,
use_bit_label=use_bit_label,
rope2d_each_sa_layer=rope2d_each_sa_layer,
rope2d_normalized_by_hw=rope2d_normalized_by_hw,
pn=pn,
apply_spatial_patchify=apply_spatial_patchify,
inference_mode=True,
train_h_div_w_list=[1.0],
**model_kwargs,
).to(device=device)
print(f'[you selected Infinity with {model_kwargs=}] model size: {sum(p.numel() for p in infinity_test.parameters())/1e9:.2f}B, bf16={bf16}')
if bf16:
for block in infinity_test.unregistered_blocks:
block.bfloat16()
infinity_test.eval()
infinity_test.requires_grad_(False)
infinity_test.cuda()
torch.cuda.empty_cache()
print(f'[Load Infinity weights]')
state_dict = torch.load(model_path, map_location=device)
print(infinity_test.load_state_dict(state_dict))
infinity_test.rng = torch.Generator(device=device)
return infinity_test
def transform(pil_img, tgt_h, tgt_w):
width, height = pil_img.size
if width / height <= tgt_w / tgt_h:
resized_width = tgt_w
resized_height = int(tgt_w / (width / height))
else:
resized_height = tgt_h
resized_width = int((width / height) * tgt_h)
pil_img = pil_img.resize((resized_width, resized_height), resample=PImage.LANCZOS)
# crop the center out
arr = np.array(pil_img)
crop_y = (arr.shape[0] - tgt_h) // 2
crop_x = (arr.shape[1] - tgt_w) // 2
im = to_tensor(arr[crop_y: crop_y + tgt_h, crop_x: crop_x + tgt_w])
return im.add(im).add_(-1)
def joint_vi_vae_encode_decode(vae, image_path, scale_schedule, device, tgt_h, tgt_w):
pil_image = Image.open(image_path).convert('RGB')
inp = transform(pil_image, tgt_h, tgt_w)
inp = inp.unsqueeze(0).to(device)
scale_schedule = [(item[0], item[1], item[2]) for item in scale_schedule]
t1 = time.time()
h, z, _, all_bit_indices, _, infinity_input = vae.encode(inp, scale_schedule=scale_schedule)
t2 = time.time()
recons_img = vae.decode(z)[0]
if len(recons_img.shape) == 4:
recons_img = recons_img.squeeze(1)
print(f'recons: z.shape: {z.shape}, recons_img shape: {recons_img.shape}')
t3 = time.time()
print(f'vae encode takes {t2-t1:.2f}s, decode takes {t3-t2:.2f}s')
recons_img = (recons_img + 1) / 2
recons_img = recons_img.permute(1, 2, 0).mul_(255).cpu().numpy().astype(np.uint8)
gt_img = (inp[0] + 1) / 2
gt_img = gt_img.permute(1, 2, 0).mul_(255).cpu().numpy().astype(np.uint8)
print(recons_img.shape, gt_img.shape)
return gt_img, recons_img, all_bit_indices
def load_visual_tokenizer(args):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# load vae
if args.vae_type in [16,18,20,24,32,64]:
from models.bsq_vae.vae import vae_model
schedule_mode = "dynamic"
codebook_dim = args.vae_type
codebook_size = 2**codebook_dim
if args.apply_spatial_patchify:
patch_size = 8
encoder_ch_mult=[1, 2, 4, 4]
decoder_ch_mult=[1, 2, 4, 4]
else:
patch_size = 16
encoder_ch_mult=[1, 2, 4, 4, 4]
decoder_ch_mult=[1, 2, 4, 4, 4]
vae = vae_model(args.vae_path, schedule_mode, codebook_dim, codebook_size, patch_size=patch_size,
encoder_ch_mult=encoder_ch_mult, decoder_ch_mult=decoder_ch_mult, test_mode=True).to(device)
else:
raise ValueError(f'vae_type={args.vae_type} not supported')
return vae
def load_transformer(vae, args):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_path = args.model_path
if args.checkpoint_type == 'torch':
# copy large model to local; save slim to local; and copy slim to nas; load local slim model
if osp.exists(args.cache_dir):
local_model_path = osp.join(args.cache_dir, 'tmp', model_path.replace('/', '_'))
else:
local_model_path = model_path
if args.enable_model_cache:
slim_model_path = model_path.replace('ar-', 'slim-')
local_slim_model_path = local_model_path.replace('ar-', 'slim-')
os.makedirs(osp.dirname(local_slim_model_path), exist_ok=True)
print(f'model_path: {model_path}, slim_model_path: {slim_model_path}')
print(f'local_model_path: {local_model_path}, local_slim_model_path: {local_slim_model_path}')
if not osp.exists(local_slim_model_path):
if osp.exists(slim_model_path):
print(f'copy {slim_model_path} to {local_slim_model_path}')
shutil.copyfile(slim_model_path, local_slim_model_path)
else:
if not osp.exists(local_model_path):
print(f'copy {model_path} to {local_model_path}')
shutil.copyfile(model_path, local_model_path)
save_slim_model(local_model_path, save_file=local_slim_model_path, device=device)
print(f'copy {local_slim_model_path} to {slim_model_path}')
if not osp.exists(slim_model_path):
shutil.copyfile(local_slim_model_path, slim_model_path)
os.remove(local_model_path)
os.remove(model_path)
slim_model_path = local_slim_model_path
else:
slim_model_path = model_path
print(f'load checkpoint from {slim_model_path}')
if args.model_type == 'infinity_2b':
kwargs_model = dict(depth=32, embed_dim=2048, num_heads=2048//128, drop_path_rate=0.1, mlp_ratio=4, block_chunks=8) # 2b model
elif args.model_type == 'infinity_layer12':
kwargs_model = dict(depth=12, embed_dim=768, num_heads=8, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
elif args.model_type == 'infinity_layer16':
kwargs_model = dict(depth=16, embed_dim=1152, num_heads=12, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
elif args.model_type == 'infinity_layer24':
kwargs_model = dict(depth=24, embed_dim=1536, num_heads=16, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
elif args.model_type == 'infinity_layer32':
kwargs_model = dict(depth=32, embed_dim=2080, num_heads=20, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
elif args.model_type == 'infinity_layer40':
kwargs_model = dict(depth=40, embed_dim=2688, num_heads=24, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
elif args.model_type == 'infinity_layer48':
kwargs_model = dict(depth=48, embed_dim=3360, num_heads=28, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
infinity = load_infinity(
rope2d_each_sa_layer=args.rope2d_each_sa_layer,
rope2d_normalized_by_hw=args.rope2d_normalized_by_hw,
use_scale_schedule_embedding=args.use_scale_schedule_embedding,
pn=args.pn,
use_bit_label=args.use_bit_label,
add_lvl_embeding_only_first_block=args.add_lvl_embeding_only_first_block,
model_path=slim_model_path,
scale_schedule=None,
vae=vae,
device=device,
model_kwargs=kwargs_model,
text_channels=args.text_channels,
apply_spatial_patchify=args.apply_spatial_patchify,
use_flex_attn=args.use_flex_attn,
bf16=args.bf16,
)
return infinity
def enhance_prompt(prompt):
SYSTEM = """You are part of a team of bots that creates images. You work with an assistant bot that will draw anything you say.
When given a user prompt, your role is to transform it into a creative, detailed, and vivid image description. Additionally, you will assign a configuration value (`cfg`) based on the type of image.
### Guidelines for Generating the Output:
1. **Output Format:**
Your response must be in the following dictionary format:
```json
{
"prompt": "<enhanced image description>",
"cfg": <cfg value>
}
```
2. **Enhancing the "prompt" field:**
- Use your creativity to transform short or vague prompts into highly detailed, descriptive, and imaginative image descriptions.
- Preserve the original intent and meaning of the user’s input.
- Focus on vivid imagery, sensory details, and emotional resonance in your descriptions.
- For particularly long user prompts (over 50 words), output them directly without refinement.
- Image descriptions must remain between 8-512 words. Any excess text will be ignored.
- If the user's request involves rendering specific text in the image, enclose that text in single quotation marks and prefix it with "the text".
3. **Determining the "cfg" field:**
- If the image to be generated is likely to feature a clear face, set `"cfg": 1`.
- If the image does not prominently feature a face, set `"cfg": 3`.
4. **Examples of Enhanced Prompts:**
- **User prompt:** "a tree"
**Enhanced prompt:** "A photo of a majestic oak tree stands proudly in the middle of a sunlit meadow, its branches stretching out like welcoming arms. The leaves shimmer in shades of vibrant green, casting dappled shadows on the soft grass below."
**Cfg:** `3`
- **User prompt:** "a cat by the window"
**Enhanced prompt:** "A serene scene of a fluffy tabby cat perched on the windowsill, gazing out at the golden hues of a sunset. The soft light filters through lace curtains, highlighting the cat’s delicate whiskers and its relaxed posture."
**Cfg:** `3`
5. **Your Output:**
Always return a single dictionary containing both `"prompt"` and `"cfg"` fields. Avoid any additional commentary or explanations.
Don't write anything except the dictionary in the output. (Don't start with ```)
"""
result = client.predict(
query=prompt,
history=[],
system=SYSTEM,
api_name="/model_chat"
)
dict_of_inputs = json.loads(result[1][-1][-1])
print(dict_of_inputs)
return gr.update(value=dict_of_inputs["prompt"]), gr.update(value=float(dict_of_inputs['cfg']))
# Set up paths
weights_path = Path(__file__).parent / 'weights'
weights_path.mkdir(exist_ok=True)
download_infinity_weights(weights_path)
# Device setup
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float32
# Define args
args = argparse.Namespace(
pn='1M',
model_path=str(weights_path / 'infinity_2b_reg.pth'),
cfg_insertion_layer=0,
vae_type=32,
vae_path=str(weights_path / 'infinity_vae_d32reg.pth'),
add_lvl_embeding_only_first_block=1,
use_bit_label=1,
model_type='infinity_2b',
rope2d_each_sa_layer=1,
rope2d_normalized_by_hw=2,
use_scale_schedule_embedding=0,
sampling_per_bits=1,
text_channels=2048,
apply_spatial_patchify=0,
h_div_w_template=1.000,
use_flex_attn=0,
cache_dir='/dev/shm',
checkpoint_type='torch',
seed=0,
bf16=1 if dtype == torch.bfloat16 else 0,
save_file='tmp.jpg',
enable_model_cache=False,
)
# Load models
text_tokenizer, text_encoder = load_tokenizer(t5_path="google/flan-t5-xl")
vae = load_visual_tokenizer(args)
infinity = load_transformer(vae, args)
# Define the image generation function
@spaces.GPU
def generate_image(prompt, cfg, tau, h_div_w, seed, enable_positive_prompt=False):
try:
args.prompt = prompt
args.cfg = cfg
args.tau = tau
args.h_div_w = h_div_w
args.seed = seed
args.enable_positive_prompt = enable_positive_prompt
# Find the closest h_div_w_template
h_div_w_template_ = h_div_w_templates[np.argmin(np.abs(h_div_w_templates - h_div_w))]
# Get scale_schedule based on h_div_w_template_
scale_schedule = dynamic_resolution_h_w[h_div_w_template_][args.pn]['scales']
scale_schedule = [(1, h, w) for (_, h, w) in scale_schedule]
# Generate the image
generated_image = gen_one_img(
infinity,
vae,
text_tokenizer,
text_encoder,
prompt,
g_seed=seed,
gt_leak=0,
gt_ls_Bl=None,
cfg_list=cfg,
tau_list=tau,
scale_schedule=scale_schedule,
cfg_insertion_layer=[args.cfg_insertion_layer],
vae_type=args.vae_type,
sampling_per_bits=args.sampling_per_bits,
enable_positive_prompt=enable_positive_prompt,
)
# Convert the image to RGB and uint8
image = generated_image.cpu().numpy()
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = np.uint8(image)
return image
except Exception as e:
print(f"Error generating image: {e}")
return None
# Set up Gradio interface
with gr.Blocks() as demo:
gr.Markdown("<h1><center>Infinity Image Generator</center></h1>")
with gr.Row():
with gr.Column():
# Prompt Settings
gr.Markdown("### Prompt Settings")
prompt = gr.Textbox(label="Prompt", value="alien spaceship enterprise", placeholder="Enter your prompt here...")
enhance_prompt_button = gr.Button("Enhance Prompt", variant="secondary")
# Image Settings
gr.Markdown("### Image Settings")
with gr.Row():
cfg = gr.Slider(label="CFG (Classifier-Free Guidance)", minimum=1, maximum=10, step=0.5, value=3, info="Controls the strength of the prompt.")
tau = gr.Slider(label="Tau (Temperature)", minimum=0.1, maximum=1.0, step=0.1, value=0.5, info="Controls the randomness of the output.")
with gr.Row():
h_div_w = gr.Slider(label="Aspect Ratio (Height/Width)", minimum=0.5, maximum=2.0, step=0.1, value=1.0, info="Set the aspect ratio of the generated image.")
seed = gr.Number(label="Seed", value=random.randint(0, 10000), info="Set a seed for reproducibility.")
# Generate Button
generate_button = gr.Button("Generate Image", variant="primary")
with gr.Column():
# Output Section
gr.Markdown("### Generated Image")
output_image = gr.Image(label="Generated Image", type="pil")
gr.Markdown("**Tip:** Right-click the image to save it.")
# Error Handling
error_message = gr.Textbox(label="Error Message", visible=False)
# Link the enhance prompt button to the prompt enhancement function
enhance_prompt_button.click(
enhance_prompt,
inputs=prompt,
outputs=[prompt, cfg],
)
# Link the generate button to the image generation function
generate_button.click(
generate_image,
inputs=[prompt, cfg, tau, h_div_w, seed],
outputs=output_image
)
# Launch the Gradio app
demo.launch() |