MohamedRashad commited on
Commit
e8fcedb
·
1 Parent(s): 5d7365b

Refactor app.py to initialize FLUX pipeline and VAE on CUDA, enhancing image generation capabilities

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -1,3 +1,10 @@
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import spaces
3
  from gradio_litmodel3d import LitModel3D
@@ -15,15 +22,9 @@ from trellis.pipelines import TrellisImageTo3DPipeline
15
  from trellis.representations import Gaussian, MeshExtractResult
16
  from trellis.utils import render_utils, postprocessing_utils
17
  from gradio_client import Client
18
- from diffusers import FluxPipeline, AutoencoderKL
19
- from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
20
 
21
  llm_client = Client("Qwen/Qwen2.5-72B-Instruct")
22
 
23
- pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
24
- good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16)
25
- pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
26
-
27
  def generate_t2i_prompt(item_name):
28
  llm_prompt_template = """You are tasked with creating a concise yet highly detailed description of an item to be used for generating an image in a game development pipeline. The image should show the **entire item** with no parts cropped or hidden. The background should always be plain and monocolor, with no focus on it.
29
 
@@ -56,7 +57,6 @@ Focus on the item itself, ensuring it is fully described, and specify a plain, w
56
  @spaces.GPU(duration=75)
57
  def generate_item_image(object_t2i_prompt):
58
  trial_id = ""
59
- pipe.cuda()
60
  for image in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
61
  prompt=object_t2i_prompt,
62
  guidance_scale=3.5,
 
1
+ from diffusers import FluxPipeline, AutoencoderKL
2
+ from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
3
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
4
+ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
5
+ good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device)
6
+ pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
7
+
8
  import gradio as gr
9
  import spaces
10
  from gradio_litmodel3d import LitModel3D
 
22
  from trellis.representations import Gaussian, MeshExtractResult
23
  from trellis.utils import render_utils, postprocessing_utils
24
  from gradio_client import Client
 
 
25
 
26
  llm_client = Client("Qwen/Qwen2.5-72B-Instruct")
27
 
 
 
 
 
28
  def generate_t2i_prompt(item_name):
29
  llm_prompt_template = """You are tasked with creating a concise yet highly detailed description of an item to be used for generating an image in a game development pipeline. The image should show the **entire item** with no parts cropped or hidden. The background should always be plain and monocolor, with no focus on it.
30
 
 
57
  @spaces.GPU(duration=75)
58
  def generate_item_image(object_t2i_prompt):
59
  trial_id = ""
 
60
  for image in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
61
  prompt=object_t2i_prompt,
62
  guidance_scale=3.5,