File size: 15,848 Bytes
5b2221d 411d2c3 5b2221d 9e80610 411d2c3 d98a3d8 411d2c3 95e3db5 b316254 d5c245c 968024b 411d2c3 d98a3d8 411d2c3 9e80610 411d2c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
import streamlit as st
import requests
import pandas as pd
import pickle
import gdown
import os
# Set page configuration
st.set_page_config(page_title="Movie Recommendation", page_icon="🎬", layout="wide")
st.markdown(
"""
<style>
body {
background-image: url("https://repository-images.githubusercontent.com/275336521/20d38e00-6634-11eb-9d1f-6a5232d0f84f");
color: #FFFFFF;
font-family: 'Arial', sans-serif;
}
.stApp {
background: rgba(0, 0, 0, 0.7);
border-radius: 15px;
padding: 20px;
}
.title {
font-size: 3em;
text-align: center;
margin-bottom: 20px;
font-weight: bold;
color: #FF0000;
}
.section-title {
font-size: 2em;
margin-top: 30px;
margin-bottom: 20px;
text-align: center;
color: #FFD700;
}
.recommendation {
border: 1px solid #FFD700;
padding: 20px;
margin-bottom: 20px;
border-radius: 15px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.3);
transition: transform 0.2s, box-shadow 0.2s;
background-color: rgba(0, 0, 0, 0.8);
overflow: hidden;
}
.recommendation:hover {
transform: translateY(-10px);
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.5);
}
.recommendation img {
width: 100%;
height: 200px;
object-fit: cover;
border-radius: 10px;
margin-bottom: 10px;
}
.movie-details-container {
display: flex;
align-items: center;
margin-bottom: 20px;
}
.movie-details-container .movie-poster {
flex: 0 0 auto;
width: 30%;
margin-right: 20px;
}
.movie-details-container .movie-poster img {
width: 100%;
border-radius: 10px;
}
.movie-details-container .movie-details {
flex: 1 1 auto;
}
.movie-details-container .movie-details p {
margin: 5px 0;
}
a {
color: #FFD700;
text-decoration: none;
}
a:hover {
text-decoration: underline;
}
.stSidebar .element-container {
background: rgba(0, 0, 0, 0.7);
border-radius: 15px;
padding: 15px;
}
.stSidebar .stButton button {
background-color: #FFD700;
color: #000;
border: none;
border-radius: 10px;
padding: 10px;
transition: background-color 0.2s, transform 0.2s;
}
.stSidebar .stButton button:hover {
background-color: #FFAA00;
transform: scale(1.05);
}
</style>
""",
unsafe_allow_html=True
)
# CSV files URLs as raw data from GitHub repository
moviesCSV = "Data/movies.csv"
ratingsCSV = "Data/ratings.csv"
linksCSV = "Data/links.csv"
# the folloing code is used to download the similarity matrix from google drive if not exist
file_url = 'https://drive.google.com/uc?id=1-1bpusE96_Hh0rUxU7YmBo6RiwYLQGVy'
output_path = 'Models/similarity_matrix.pkl'
@st.cache_data
def download_model_from_google_drive(file_url, output_path):
gdown.download(file_url, output_path, quiet=False)
# # Check if the file already exists
if not os.path.exists(output_path):
print("Downloading the similarity matrix from Googlr Drive...")
# change file permission
os.chmod('Models/', 0o777)
download_model_from_google_drive(file_url, output_path)
print("Download completed......")
# Dummy data for user recommendations
user_recommendations = {
"1": ["Inception", "The Matrix", "Interstellar"],
"2": ["The Amazing Spider-Man", "District 9", "Titanic"]
}
# Function to hash passwords
def hash_password(password):
return password
# Dummy user database
user_db = {
"1": hash_password("password123"),
"2": hash_password("mypassword")
}
# Login function
def login(email, password):
if email in user_db:
return True
return False
# Function to fetch movie details from OMDb API
def fetch_movie_details(title, api_key="23f109b2"):
url = f"http://www.omdbapi.com/?t={title}&apikey={api_key}"
response = requests.get(url)
return response.json()
# Display movie details
def display_movie_details(movie):
if movie['Response'] == 'False':
st.write(f"Movie not found: {movie['Error']}")
return
if movie['imdbRating'] == 'N/A':
movie['imdbRating'] = 0
imdb_rating = float(movie['imdbRating'])
url = f"https://www.imdb.com/title/{movie['imdbID']}/"
st.markdown(
f"""
<div style="
background-color: #313131;
border-radius: 15px;
padding: 10px;
margin: 10px 0;
box-shadow: 0px 4px 12px rgba(0, 0, 0, 0.1);
">
<div style="display: flex;">
<div style="flex: 1;">
<BR>
<a href="{url}" target="_blank" >
<img src="{movie['Poster']}" style="width: 100%; border-radius: 10px;" />
</a>
</div>
<div style="flex: 3; padding-left: 20px;">
<h2 style="margin: 0;" anchor="{url}">{movie['Title']}</h2>
<p style="color: gray;">
<b>Year:</b> {movie['Year']} Rated: {movie['Rated']} <br>
<b>Genre:</b> {movie['Genre'].replace(',',' |')} <br>
</p>
<p>{movie['Plot']}</p>
<div style="margin-top: 10px;">
<div style="background-color: #e0e0e0; border-radius: 5px; overflow: hidden;">
<div style="width: {imdb_rating * 10}%; background-color: #4caf50; padding: 5px 0; text-align: center; color: white;">
{imdb_rating}
</div>
</div>
</div>
</div>
</div>
</div>
""", unsafe_allow_html=True
)
def print_movie_details(movie):
st.markdown(
f"""
<div class="recommendation">
<div style="display: flex;">
<div style="flex: 1;">
<a href="https://www.imdb.com/title/tt{movie['imdb_id']:07d}/" target="_blank">
<img src="{movie['poster_url']}" />
</a>
</div>
<div style="flex: 3; padding-left: 20px;">
<h4 style="margin: 0;">{' '.join(movie['title'].split(" ")[:-1])}</h4>
<p style="color: gray;">
<b>Year:</b> {movie['title'].split(" ")[-1]}<br>
<b>Genre:</b> {', '.join(movie['genres'])}<br>
<b>Number of Ratings:</b> {movie['num_ratings']}<br>
<b>IMDb Rating: </b>{round(movie["imdb_rating"],1)}<br>
</p>
<div style="margin-top: 10px;">
<div style="background-color: #e0e0e0; border-radius: 5px; overflow: hidden;">
<div style="width: {movie['avg_rating'] * 20}%; background-color: #4caf50; padding: 5px 0; text-align: center; color: white;">
{movie['avg_rating']}
</div>
</div>
</div>
</div>
</div>
</div>
""",
unsafe_allow_html=True
)
# Function to load data
@st.cache_data
def load_data():
movies_df = pd.read_csv(moviesCSV)
ratings_df = pd.read_csv(ratingsCSV)
links_df = pd.read_csv(linksCSV)
return movies_df, ratings_df, links_df
# Function to load similarity matrix
@st.cache_data
def load_similarity_matrix():
with open('Models/similarity_matrix.pkl', 'rb') as f:
similarity_df = pickle.load(f)
return similarity_df
# Function to get movie details
def get_movie_details(movie_id, df_movies, df_ratings, df_links):
try:
imdb_id = df_links[df_links['movieId'] == movie_id]['imdbId'].values[0]
tmdb_id = df_links[df_links['movieId'] == movie_id]['tmdbId'].values[0]
movie_data = df_movies[df_movies['movieId'] == movie_id].iloc[0]
genres = movie_data['genres'].split('|') if 'genres' in movie_data else []
avg_rating = df_ratings[df_ratings['movieId'] == movie_id]['rating'].mean()
num_ratings = df_ratings[df_ratings['movieId'] == movie_id].shape[0]
api_key = 'b8c96e534866701532768a313b978c8b'
response = requests.get(f'https://api.themoviedb.org/3/movie/{tmdb_id}?api_key={api_key}' )
poster_url = response.json().get('poster_path', '')
full_poster_url = f'https://image.tmdb.org/t/p/w500{poster_url}' if poster_url else ''
imdb_rating = response.json().get('vote_average', 0)
return {
"title": movie_data['title'],
"genres": genres,
"avg_rating": round(avg_rating, 2),
"num_ratings": num_ratings,
"imdb_id": imdb_id,
"tmdb_id": tmdb_id,
"poster_url": full_poster_url,
"imdb_rating": imdb_rating
}
except Exception as e:
st.error(f"Error fetching details for movie ID {movie_id}: {e}")
return None
# Function to recommend movies
def recommend(movie, similarity_df, movies_df, ratings_df, links_df, k=5):
try:
index = movies_df[movies_df['title'] == movie].index[0]
distances = sorted(list(enumerate(similarity_df.iloc[index])), reverse=True, key=lambda x: x[1])
recommended_movies = []
for i in distances[1:k+1]:
movie_id = movies_df.iloc[i[0]]['movieId']
movie_details = get_movie_details(movie_id, movies_df, ratings_df, links_df)
if movie_details:
recommended_movies.append(movie_details)
return recommended_movies
except Exception as e:
st.error(f"Error generating recommendations: {e}")
return []
# Main app
movies_df, ratings_df, links_df = load_data()
print("Data loaded successfully")
print("Loading similarity matrix...")
similarity_df = load_similarity_matrix()
def main():
st.sidebar.title("Navigation")
menu = ["Login", "Movie Similarity"]
choice = st.sidebar.selectbox("Select an option", menu)
if choice == "Login":
st.title("Movie Recommendations")
st.write("Welcome to the Movie Recommendation App!")
st.write("Please login to get personalized movie recommendations. username between (1 and 800)")
st.write("leve password blank for now.")
# Login form
st.sidebar.header("Login")
email = st.sidebar.text_input("Username")
# password = st.sidebar.text_input("Password", type="password")
if st.sidebar.button("Login"):
if login(email, 'password'):
st.sidebar.success("Login successful!")
recommendations = user_recommendations.get(email, [])
st.write(f"Recommendations for user number {email}:")
num_cols = 2
cols = st.columns(num_cols)
for i, movie_title in enumerate(recommendations):
movie = fetch_movie_details(movie_title)
if movie['Response'] == 'True':
with cols[i % num_cols]:
display_movie_details(movie)
else:
st.write(f"Movie details for '{movie_title}' not found.")
else:
st.sidebar.error("Invalid email or password")
elif choice == "Movie Similarity":
num_cols = 2
cols = st.columns(num_cols)
# Movie similarity search
with cols[0]:
st.title("Find Similar Movies")
selected_movie = st.selectbox("Type or select a movie from the dropdown", movies_df['title'].unique())
k = st.slider("Select the number of recommendations (k)", min_value=1, max_value=50, value=5)
button = st.button("Find Similar Movies")
with cols[1]:
st.title("Choosen Movie Details:")
if selected_movie:
correct_Name = selected_movie[:-7]
movie = fetch_movie_details(correct_Name)
if movie['Response'] == 'True':
display_movie_details(movie)
else:
st.write(f"Movie details for '{selected_movie}' not found.")
if button:
st.write("The rating bar here is token from our dataset and it's between 0 and 5.")
if selected_movie:
recommendations = recommend(selected_movie, similarity_df, movies_df, ratings_df, links_df, k)
if recommendations:
st.write(f"Similar movies to '{selected_movie}':")
num_cols = 2
cols = st.columns(num_cols)
# movie_id = movies_df[movies_df['title'] == selected_movie]['movieId'].values[0]
# movie_details = get_movie_details(movie_id, movies_df, ratings_df, links_df)
# if movie_details:
# st.markdown(f'<h2 class="section-title">{movie_details["title"]} Details:</h2>', unsafe_allow_html=True)
# st.markdown(
# f"""
# <div class="movie-details-container">
# <div class="movie-poster">
# <img src="{movie_details['poster_url']}" alt="Movie Poster">
# </div>
# <div class="movie-details">
# <p><b>Genres:</b> {', '.join(movie_details['genres'])}</p>
# <p><b>Average Rating:</b> {movie_details['avg_rating']}</p>
# <p><b>Number of Ratings:</b> {movie_details['num_ratings']}</p>
# <p><b>IMDb :</b> <a href="https://www.imdb.com/title/tt{movie_details['imdb_id']:07d}/" target="_blank">movie link</a></p>
# </div>
# </div>
# """,
# unsafe_allow_html=True
# )
for i, movie in enumerate(recommendations):
with cols[i % num_cols]:
print_movie_details(movie)
else:
st.write("No recommendations found.")
else:
st.write("Please select a movie.")
if __name__ == "__main__":
main()
|