Spaces:
Sleeping
Sleeping
File size: 2,882 Bytes
595237c ca0ae23 595237c 539c94b b358b14 595237c c37e376 2619341 c37e376 2619341 c37e376 2619341 c37e376 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import os
import re
import gradio as gr
import qdrant_client
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_qdrant import Qdrant
from langchain_openai import ChatOpenAI
class HadithChatApp:
def __init__(self):
self.QDRANT_URL = os.getenv('QDRANT_URL')
self.QDRANT_API_KEY = os.getenv('QDRANT_API_KEY')
self.GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
self.collection_name = "Cluster0"
self.client = qdrant_client.QdrantClient(
url=self.QDRANT_URL,
api_key=self.QDRANT_API_KEY
)
self.collection_config = qdrant_client.http.models.VectorParams(
size=384,
distance=qdrant_client.http.models.Distance.COSINE
)
self.embeddings = HuggingFaceEmbeddings(
model_name="intfloat/multilingual-e5-small"
)
self.vectorStore = Qdrant(
client=self.client,
collection_name=self.collection_name,
embeddings=self.embeddings
)
self.chat = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest",google_api_key=self.GOOGLE_API_KEY)
def clean_text(self, text):
text = re.sub(r'<[^>]*>', '', text)
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\s+', ' ', text)
return text.lower().strip()
def get_relevant_docs(self, question, k):
relevant_docs = self.vectorStore.similarity_search_with_score(query=question, k=k)
return relevant_docs
def extract_contexts(self, relevant_docs):
contexts = []
for doc in relevant_docs:
contexts.append(doc[0].page_content)
return contexts
def create_template(self, question, k):
relevant_docs = self.get_relevant_docs(question, k)
contexts = self.extract_contexts(relevant_docs)
template = f"""
Engage in a conversation with the user, responding to their question:
{question}
within this contexts of Hadiths:
{contexts}
Encourage the model to provide informative and culturally sensitive answers, reflecting Islamic teachings. Maintain a conversational tone and aim for clarity in responses and make sure they are restricted extracted from the provided contexts and i want you to answer me in arabic."""
return template
def generate_answer(self, question):
cleaned_question = self.clean_text(question)
query = self.create_template(cleaned_question, 10)
response = self.clean_text(self.chat.invoke(query).content)
return response
def greet(self, question):
answer = self.generate_answer(question)
return answer
if __name__ == "__main__":
hadith_chat_app = HadithChatApp()
iface = gr.Interface(fn=hadith_chat_app.greet, inputs="text", outputs="text")
iface.launch(inline=False) |