File size: 2,882 Bytes
595237c
 
ca0ae23
595237c
539c94b
b358b14
595237c
 
c37e376
 
 
 
2619341
c37e376
2619341
c37e376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2619341
c37e376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import re
import gradio as gr
import qdrant_client
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_qdrant import Qdrant
from langchain_openai import ChatOpenAI

class HadithChatApp:
    def __init__(self):
        self.QDRANT_URL = os.getenv('QDRANT_URL')
        self.QDRANT_API_KEY = os.getenv('QDRANT_API_KEY')
        self.GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')

        self.collection_name = "Cluster0"

        self.client = qdrant_client.QdrantClient(
            url=self.QDRANT_URL,
            api_key=self.QDRANT_API_KEY
        )

        self.collection_config = qdrant_client.http.models.VectorParams(
            size=384,
            distance=qdrant_client.http.models.Distance.COSINE
        )

        self.embeddings = HuggingFaceEmbeddings(
            model_name="intfloat/multilingual-e5-small"
        )

        self.vectorStore = Qdrant(
            client=self.client,
            collection_name=self.collection_name,
            embeddings=self.embeddings
        )

        self.chat = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest",google_api_key=self.GOOGLE_API_KEY)

    def clean_text(self, text):
        text = re.sub(r'<[^>]*>', '', text)
        text = re.sub(r'[^\w\s]', '', text)
        text = re.sub(r'\s+', ' ', text)
        return text.lower().strip()

    def get_relevant_docs(self, question, k):
        relevant_docs = self.vectorStore.similarity_search_with_score(query=question, k=k)
        return relevant_docs

    def extract_contexts(self, relevant_docs):
        contexts = []
        for doc in relevant_docs:
            contexts.append(doc[0].page_content)
        return contexts

    def create_template(self, question, k):
        relevant_docs = self.get_relevant_docs(question, k)
        contexts = self.extract_contexts(relevant_docs)
        template = f"""
        Engage in a conversation with the user, responding to their question:
        {question}
        within this contexts of Hadiths:
        {contexts} 
        Encourage the model to provide informative and culturally sensitive answers, reflecting Islamic teachings. Maintain a conversational tone and aim for clarity in responses and make sure they are restricted extracted from the provided contexts and i want you to answer me in arabic."""
        return template

    def generate_answer(self, question):
        cleaned_question = self.clean_text(question)
        query = self.create_template(cleaned_question, 10)
        response = self.clean_text(self.chat.invoke(query).content)
        return response

    def greet(self, question):
        answer = self.generate_answer(question)
        return answer

if __name__ == "__main__":
    hadith_chat_app = HadithChatApp()
    iface = gr.Interface(fn=hadith_chat_app.greet, inputs="text", outputs="text")
    iface.launch(inline=False)