Spaces:
Runtime error
Runtime error
| import yaml | |
| import fitz | |
| import torch | |
| import gradio as gr | |
| from PIL import Image | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.vectorstores import Chroma | |
| from langchain.chains import ConversationalRetrievalChain | |
| from langchain.document_loaders import PyPDFLoader | |
| from langchain.prompts import PromptTemplate | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
| import spaces | |
| from langchain_text_splitters import CharacterTextSplitter,RecursiveCharacterTextSplitter | |
| class PDFChatBot: | |
| def __init__(self, config_path="config.yaml"): | |
| """ | |
| Initialize the PDFChatBot instance. | |
| Parameters: | |
| config_path (str): Path to the configuration file (default is "../config.yaml"). | |
| """ | |
| self.processed = False | |
| self.page = 0 | |
| self.chat_history = [] | |
| # Initialize other attributes to None | |
| self.prompt = None | |
| self.documents = None | |
| self.embeddings = None | |
| self.vectordb = None | |
| self.tokenizer = None | |
| self.model = None | |
| self.pipeline = None | |
| self.chain = None | |
| self.chunk_size = 512 | |
| self.overlap_percentage = 50 | |
| self.max_chunks_in_context = 2 | |
| self.current_context = None | |
| self.model_temperatue = 0.5 | |
| self.format_seperator="""\n\n--\n\n""" | |
| self.pipe = None | |
| #self.chunk_size_slider = chunk_size_slider | |
| def load_embeddings(self): | |
| self.embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
| print("Embedding model loaded") | |
| def load_vectordb(self): | |
| overlap = int((self.overlap_percentage/100) * self.chunk_size) | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size=self.chunk_size, | |
| chunk_overlap=overlap, | |
| length_function=len, | |
| add_start_index=True, | |
| ) | |
| docs = text_splitter.split_documents(self.documents) | |
| self.vectordb = Chroma.from_documents(docs, self.embeddings) | |
| print("Vector store created") | |
| def load_tokenizer(self): | |
| self.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct") | |
| def create_organic_pipeline(self): | |
| self.pipe = pipeline( | |
| "text-generation", | |
| model="meta-llama/Meta-Llama-3-8B-Instruct", | |
| model_kwargs={"torch_dtype": torch.bfloat16}, | |
| device="cuda", | |
| ) | |
| print("Model pipeline loaded") | |
| def get_organic_context(self, query): | |
| documents = self.vectordb.similarity_search_with_relevance_scores(query, k=self.max_chunks_in_context) | |
| context = self.format_seperator.join([doc.page_content for doc, score in documents]) | |
| self.current_context = context | |
| print("Context Ready") | |
| print(self.current_context) | |
| def create_organic_response(self, history, query): | |
| self.get_organic_context(query) | |
| """ | |
| pipe = pipeline( | |
| "text-generation", | |
| model="meta-llama/Meta-Llama-3-8B-Instruct", | |
| model_kwargs={"torch_dtype": torch.bfloat16}, | |
| device="cuda", | |
| ) | |
| """ | |
| messages = [ | |
| {"role": "system", "content": "From the the contained given below, answer the question of user \n " + self.current_context}, | |
| {"role": "user", "content": query}, | |
| ] | |
| prompt = self.pipe.tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True | |
| ) | |
| temp = 0.1 | |
| outputs = self.pipe( | |
| prompt, | |
| max_new_tokens=1024, | |
| do_sample=True, | |
| temperature=temp, | |
| top_p=0.9, | |
| ) | |
| print(outputs) | |
| return outputs[0]["generated_text"][len(prompt):] | |
| def process_file(self, file): | |
| """ | |
| Process the uploaded PDF file and initialize necessary components: Tokenizer, VectorDB and LLM. | |
| Parameters: | |
| file (FileStorage): The uploaded PDF file. | |
| """ | |
| self.documents = PyPDFLoader(file.name).load() | |
| self.load_embeddings() | |
| self.load_vectordb() | |
| self.create_organic_pipeline() | |
| #self.create_chain() | |
| def generate_response(self, history, query, file,chunk_size,chunk_overlap_percentage,model_temperature,max_chunks_in_context): | |
| self.chunk_size = chunk_size | |
| self.overlap_percentage = chunk_overlap_percentage | |
| self.model_temperatue = model_temperature | |
| self.max_chunks_in_context = max_chunks_in_context | |
| if not query: | |
| raise gr.Error(message='Submit a question') | |
| if not file: | |
| raise gr.Error(message='Upload a PDF') | |
| if not self.processed: | |
| self.process_file(file) | |
| self.processed = True | |
| result = self.create_organic_response(history="",query=query) | |
| for char in result: | |
| history[-1][-1] += char | |
| return history,"" | |
| def render_file(self, file,chunk_size,chunk_overlap_percentage,model_temperature,max_chunks_in_context): | |
| print(chunk_size) | |
| doc = fitz.open(file.name) | |
| page = doc[self.page] | |
| self.chunk_size = chunk_size | |
| self.overlap_percentage = chunk_overlap_percentage | |
| self.model_temperatue = model_temperature | |
| self.max_chunks_in_context = max_chunks_in_context | |
| pix = page.get_pixmap(matrix=fitz.Matrix(300 / 72, 300 / 72)) | |
| image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples) | |
| return image | |
| def add_text(self, history, text): | |
| """ | |
| Add user-entered text to the chat history. | |
| Parameters: | |
| history (list): List of chat history tuples. | |
| text (str): User-entered text. | |
| Returns: | |
| list: Updated chat history. | |
| """ | |
| if not text: | |
| raise gr.Error('Enter text') | |
| history.append((text, '')) | |
| return history |