import spaces import torch import re import gradio as gr from threading import Thread from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM import subprocess # Install flash-attn for faster inference subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) # Model and tokenizer setup model_id = "vikhyatk/moondream2" revision = "2024-04-02" tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision) moondream = AutoModelForCausalLM.from_pretrained( model_id, trust_remote_code=True, revision=revision, torch_dtype=torch.bfloat16, device_map={"": "cuda"}, attn_implementation="flash_attention_2") moondream.eval() # Function to generate responses @spaces.GPU(duration=10) def answer_question(img, prompt): image_embeds = moondream.encode_image(img) streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True) thread = Thread( target=moondream.answer_question, kwargs={ "image_embeds": image_embeds, "question": prompt, "tokenizer": tokenizer, "streamer": streamer, }, ) thread.start() buffer = "" for new_text in streamer: buffer += new_text yield buffer.strip() # Create the Gradio interface with gr.Blocks(theme="Monochrome") as demo: gr.Markdown( """ # AskMoondream: Moondream 2 Demonstration Space Moondream2 is a 1.86B parameter model initialized with weights from SigLIP and Phi 1.5. Modularity AI presents this open source huggingface space for running fast experimental inferences on Moondream2. """ ) # Chatbot layout chatbot = gr.Chatbot() # Image upload and prompt input with gr.Row(): img = gr.Image(type="pil", label="Upload an Image") prompt = gr.Textbox(label="Your Question", placeholder="Ask something about the image...", show_label=False) # Send message button send_btn = gr.Button("Send") # Function to send message and get response def send_message(history, prompt): history.append((prompt, None)) response = answer_question(img.value, prompt) history.append((None, response)) return history, "" # Clear the input box send_btn.click(send_message, [chatbot, prompt], [chatbot, prompt]) prompt.submit(send_message, [chatbot, prompt], [chatbot, prompt]) demo.queue().launch()