Spaces:
Runtime error
Runtime error
| import spaces | |
| import torch | |
| import re | |
| import gradio as gr | |
| from threading import Thread | |
| from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM | |
| import subprocess | |
| subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| model_id = "vikhyatk/moondream2" | |
| revision = "2024-04-02" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision) | |
| moondream = AutoModelForCausalLM.from_pretrained( | |
| model_id, trust_remote_code=True, revision=revision, | |
| torch_dtype=torch.bfloat16, device_map={"": "cuda"}, | |
| attn_implementation="flash_attention_2" | |
| ) | |
| moondream.eval() | |
| def answer_question(img, prompt): | |
| image_embeds = moondream.encode_image(img) | |
| streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True) | |
| thread = Thread( | |
| target=moondream.answer_question, | |
| kwargs={ | |
| "image_embeds": image_embeds, | |
| "question": prompt, | |
| "tokenizer": tokenizer, | |
| "streamer": streamer, | |
| }, | |
| ) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| yield buffer.strip() | |
| with gr.Blocks(theme="Monochrome") as demo: | |
| gr.Markdown( | |
| """ | |
| # AskMoondream: Moondream 2 Demonstration Space | |
| Moondream2 is a 1.86B parameter model initialized with weights from SigLIP and Phi 1.5. | |
| Modularity AI presents this open source huggingface space for running fast experimental inferences on Moondream2. | |
| """ | |
| ) | |
| with gr.Row(): | |
| prompt = gr.Textbox(label="Input", value="Describe this image.", scale=4) | |
| submit = gr.Button("Submit") | |
| with gr.Row(): | |
| img = gr.Image(type="pil", label="Upload an Image") | |
| output = gr.TextArea(label="Response") | |
| submit.click(answer_question, [img, prompt], output) | |
| prompt.submit(answer_question, [img, prompt], output) | |
| demo.queue().launch() | |