Spaces:
Runtime error
Runtime error
import spaces | |
import torch | |
import re | |
import gradio as gr | |
from threading import Thread | |
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM | |
import subprocess | |
# Install flash-attn for faster inference | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
# Model and tokenizer setup | |
model_id = "vikhyatk/moondream2" | |
revision = "2024-04-02" | |
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision) | |
moondream = AutoModelForCausalLM.from_pretrained( | |
model_id, trust_remote_code=True, revision=revision, | |
torch_dtype=torch.bfloat16, device_map={"": "cuda"}, | |
attn_implementation="flash_attention_2") | |
moondream.eval() | |
# Function to generate responses | |
def answer_question(img, prompt): | |
image_embeds = moondream.encode_image(img) | |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True) | |
thread = Thread( | |
target=moondream.answer_question, | |
kwargs={ | |
"image_embeds": image_embeds, | |
"question": prompt, | |
"tokenizer": tokenizer, | |
"streamer": streamer, | |
}, | |
) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
yield buffer.strip() | |
# Create the Gradio interface | |
with gr.Blocks(theme="Monochrome") as demo: | |
gr.Markdown( | |
""" | |
# AskMoondream: Moondream 2 Demonstration Space | |
Moondream2 is a 1.86B parameter model initialized with weights from SigLIP and Phi 1.5. | |
Modularity AI presents this open source huggingface space for running fast experimental inferences on Moondream2. | |
""" | |
) | |
# Chatbot layout | |
chatbot = gr.Chatbot() | |
# Image upload and prompt input | |
with gr.Row(): | |
img = gr.Image(type="pil", label="Upload an Image") | |
prompt = gr.Textbox(label="Your Question", placeholder="Ask something about the image...", show_label=False) | |
# Send message button | |
send_btn = gr.Button("Send") | |
# Function to send message and get response | |
def send_message(history, prompt): | |
history.append((prompt, None)) | |
response = answer_question(img.value, prompt) | |
history.append((None, response)) | |
return history, "" # Clear the input box | |
send_btn.click(send_message, [chatbot, prompt], [chatbot, prompt]) | |
prompt.submit(send_message, [chatbot, prompt], [chatbot, prompt]) | |
demo.queue().launch() |