Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						77f8a57
	
1
								Parent(s):
							
							881c1d5
								
Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -5,21 +5,7 @@ from transformers import TFAutoModelForQuestionAnswering | |
| 5 | 
             
            from datasets import Dataset
         | 
| 6 | 
             
            import streamlit as st
         | 
| 7 |  | 
| 8 | 
            -
            #prompts
         | 
| 9 | 
            -
            st.title("Tweet Sentiment Extractor...")
         | 
| 10 | 
            -
             | 
| 11 | 
            -
            # take text/tweet input
         | 
| 12 | 
            -
            textbox = st.text_area('Write your text in this box:', '',height=100,  max_chars=500 )
         | 
| 13 | 
            -
            option = st.selectbox(
         | 
| 14 | 
            -
                 'How would you like to be contacted?',
         | 
| 15 | 
            -
                     ('positive', 'negative', 'neutral'))
         | 
| 16 | 
            -
                              
         | 
| 17 | 
            -
             | 
| 18 | 
            -
            python_dict = {"text":textbox, "sentiment":option}
         | 
| 19 |  | 
| 20 | 
            -
            dataset = Dataset.from_dict(python_dict)
         | 
| 21 | 
            -
             | 
| 22 | 
            -
            MAX_LENGTH = 105
         | 
| 23 |  | 
| 24 |  | 
| 25 | 
             
            # loading saved roberta-base tokenizer to tokenize the text into input IDs that model can make sense of.
         | 
| @@ -35,83 +21,104 @@ def load_model(): | |
| 35 | 
             
                return TFAutoModelForQuestionAnswering.from_pretrained(model_checkpoint)
         | 
| 36 | 
             
            model = load_model()
         | 
| 37 |  | 
| 38 | 
            -
            def process_data(examples):
         | 
| 39 | 
            -
                 questions = examples["sentiment"]
         | 
| 40 | 
            -
                 context = examples["text"]
         | 
| 41 | 
            -
                 inputs = tokenizer(
         | 
| 42 | 
            -
                        questions,
         | 
| 43 | 
            -
                        context,
         | 
| 44 | 
            -
                        max_length = MAX_LENGTH,
         | 
| 45 | 
            -
                        padding="max_length",
         | 
| 46 | 
            -
                        return_offsets_mapping = True,   
         | 
| 47 | 
            -
                 )
         | 
| 48 | 
            -
                 # Assigning None values to all offset mapping of tokens which are not the context tokens.
         | 
| 49 | 
            -
                 for i in range(len(inputs["input_ids"])):
         | 
| 50 | 
            -
                      offset = inputs["offset_mapping"][i]
         | 
| 51 | 
            -
                      sequence_ids = inputs.sequence_ids(i)
         | 
| 52 | 
            -
                      inputs["offset_mapping"][i] = [
         | 
| 53 | 
            -
                            o if sequence_ids[k] == 1 else None for k, o in enumerate(offset)
         | 
| 54 | 
            -
                      ]
         | 
| 55 | 
            -
                 return inputs
         | 
| 56 | 
            -
                
         | 
| 57 | 
            -
            processed_raw_data = dataset.map(
         | 
| 58 | 
            -
                    process_data,
         | 
| 59 | 
            -
                    batched = True
         | 
| 60 | 
            -
            )
         | 
| 61 | 
            -
            tf_raw_dataset = processed_raw_data.to_tf_dataset(
         | 
| 62 | 
            -
                    columns=["input_ids", "attention_mask"],
         | 
| 63 | 
            -
                    shuffle=False,
         | 
| 64 | 
            -
                    batch_size=1,
         | 
| 65 | 
            -
                )
         | 
| 66 |  | 
| 67 | 
            -
            # | 
| 68 | 
            -
             | 
| 69 | 
            -
            start_logits = outputs.start_logits
         | 
| 70 | 
            -
            end_logits = outputs.end_logits
         | 
| 71 | 
            -
                
         | 
| 72 | 
            -
                # Post Processing.
         | 
| 73 | 
            -
                # Using start_logits and end_logits to generate the final answer from the given context.
         | 
| 74 | 
            -
            n_best = 20
         | 
| 75 |  | 
| 76 | 
            -
             | 
| 77 | 
            -
             | 
| 78 | 
            -
             | 
| 79 | 
            -
             | 
| 80 | 
            -
             | 
| 81 | 
            -
             | 
| 82 | 
            -
             | 
| 83 | 
            -
             | 
| 84 | 
            -
                      end_indexes = np.argsort(end_logit)[-1: -n_best - 1: -1].tolist()
         | 
| 85 |  | 
| 86 | 
            -
             | 
| 87 | 
            -
             | 
| 88 | 
            -
             | 
| 89 | 
            -
                                # skip answer that are not in the context.
         | 
| 90 | 
            -
                                if offset[start_index] is None or offset[end_index] is None:
         | 
| 91 | 
            -
                                     continue
         | 
| 92 | 
            -
                                # skip answer with length that is either < 0
         | 
| 93 | 
            -
                                if end_index < start_index:
         | 
| 94 | 
            -
                                     continue
         | 
| 95 | 
            -
                                flag = True
         | 
| 96 | 
            -
                                answer = context[offset[start_index][0]: offset[end_index][1]]
         | 
| 97 | 
            -
                                predicted_answer.append(answer)
         | 
| 98 | 
            -
                                break
         | 
| 99 | 
            -
                           if flag:
         | 
| 100 | 
            -
                                break
         | 
| 101 | 
            -
                      if not flag:
         | 
| 102 | 
            -
                           predicted_answer.append(answer)
         | 
| 103 | 
            -
                 return {"predicted_answer":predicted_answer}
         | 
| 104 | 
            -
                
         | 
| 105 | 
            -
            processed_raw_data.set_format("pandas")
         | 
| 106 | 
            -
                
         | 
| 107 | 
            -
            processed_raw_df =  processed_raw_data[:]
         | 
| 108 | 
            -
            processed_raw_df["start_logits"] = start_logits.tolist()
         | 
| 109 | 
            -
            processed_raw_df["end_logits"] = end_logits.tolist()
         | 
| 110 | 
            -
            processed_raw_df["text"] = X["text"]
         | 
| 111 | 
            -
                
         | 
| 112 | 
            -
            final_data = Dataset.from_pandas(processed_raw_df)
         | 
| 113 | 
            -
            final_data = final_data.map(predict_answers,batched=True)
         | 
| 114 | 
            -
                
         | 
| 115 | 
            -
              
         | 
| 116 |  | 
| 117 | 
            -
            st. | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 5 | 
             
            from datasets import Dataset
         | 
| 6 | 
             
            import streamlit as st
         | 
| 7 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 8 |  | 
|  | |
|  | |
|  | |
| 9 |  | 
| 10 |  | 
| 11 | 
             
            # loading saved roberta-base tokenizer to tokenize the text into input IDs that model can make sense of.
         | 
|  | |
| 21 | 
             
                return TFAutoModelForQuestionAnswering.from_pretrained(model_checkpoint)
         | 
| 22 | 
             
            model = load_model()
         | 
| 23 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 24 |  | 
| 25 | 
            +
            #prompts
         | 
| 26 | 
            +
            st.title("Tweet Sentiment Extractor...")
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 27 |  | 
| 28 | 
            +
            # take text/tweet input
         | 
| 29 | 
            +
            textbox = st.text_area('Write your text in this box:', '',height=100,  max_chars=500 )
         | 
| 30 | 
            +
            option = st.selectbox(
         | 
| 31 | 
            +
                 'How would you like to be contacted?',
         | 
| 32 | 
            +
                     ('positive', 'negative', 'neutral'))
         | 
| 33 | 
            +
                              
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            python_dict = {"text":textbox, "sentiment":option}
         | 
|  | |
| 36 |  | 
| 37 | 
            +
            dataset = Dataset.from_dict(python_dict)
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            MAX_LENGTH = 105
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 40 |  | 
| 41 | 
            +
            button = st.button('Extract text of the given sentiment..')
         | 
| 42 | 
            +
            if button:
         | 
| 43 | 
            +
                 with st.spinner('In progress.......'):
         | 
| 44 | 
            +
                 
         | 
| 45 | 
            +
                      def process_data(examples):
         | 
| 46 | 
            +
                           questions = examples["sentiment"]
         | 
| 47 | 
            +
                           context = examples["text"]
         | 
| 48 | 
            +
                           inputs = tokenizer(
         | 
| 49 | 
            +
                                  questions,
         | 
| 50 | 
            +
                                  context,
         | 
| 51 | 
            +
                                  max_length = MAX_LENGTH,
         | 
| 52 | 
            +
                                  padding="max_length",
         | 
| 53 | 
            +
                                  return_offsets_mapping = True,   
         | 
| 54 | 
            +
                           )
         | 
| 55 | 
            +
                           # Assigning None values to all offset mapping of tokens which are not the context tokens.
         | 
| 56 | 
            +
                           for i in range(len(inputs["input_ids"])):
         | 
| 57 | 
            +
                                offset = inputs["offset_mapping"][i]
         | 
| 58 | 
            +
                                sequence_ids = inputs.sequence_ids(i)
         | 
| 59 | 
            +
                                inputs["offset_mapping"][i] = [
         | 
| 60 | 
            +
                                      o if sequence_ids[k] == 1 else None for k, o in enumerate(offset)
         | 
| 61 | 
            +
                                ]
         | 
| 62 | 
            +
                           return inputs
         | 
| 63 | 
            +
                          
         | 
| 64 | 
            +
                      processed_raw_data = dataset.map(
         | 
| 65 | 
            +
                              process_data,
         | 
| 66 | 
            +
                              batched = True
         | 
| 67 | 
            +
                      )
         | 
| 68 | 
            +
                      tf_raw_dataset = processed_raw_data.to_tf_dataset(
         | 
| 69 | 
            +
                              columns=["input_ids", "attention_mask"],
         | 
| 70 | 
            +
                              shuffle=False,
         | 
| 71 | 
            +
                              batch_size=1,
         | 
| 72 | 
            +
                          )
         | 
| 73 | 
            +
                      
         | 
| 74 | 
            +
                      # final predictions.
         | 
| 75 | 
            +
                      outputs = model.predict(tf_raw_dataset)
         | 
| 76 | 
            +
                      start_logits = outputs.start_logits
         | 
| 77 | 
            +
                      end_logits = outputs.end_logits
         | 
| 78 | 
            +
                          
         | 
| 79 | 
            +
                          # Post Processing.
         | 
| 80 | 
            +
                          # Using start_logits and end_logits to generate the final answer from the given context.
         | 
| 81 | 
            +
                      n_best = 20
         | 
| 82 | 
            +
                      
         | 
| 83 | 
            +
                      def predict_answers(inputs):
         | 
| 84 | 
            +
                           predicted_answer = []
         | 
| 85 | 
            +
                           for i in range(len(inputs["offset_mapping"])):
         | 
| 86 | 
            +
                                start_logit = inputs["start_logits"][i]
         | 
| 87 | 
            +
                                end_logit = inputs["end_logits"][i]
         | 
| 88 | 
            +
                                context = inputs["text"][i]
         | 
| 89 | 
            +
                                offset = inputs["offset_mapping"][i]
         | 
| 90 | 
            +
                                start_indexes = np.argsort(start_logit)[-1: -n_best - 1:-1].tolist()
         | 
| 91 | 
            +
                                end_indexes = np.argsort(end_logit)[-1: -n_best - 1: -1].tolist()
         | 
| 92 | 
            +
                      
         | 
| 93 | 
            +
                                flag = False
         | 
| 94 | 
            +
                                for start_index in start_indexes:
         | 
| 95 | 
            +
                                     for end_index in end_indexes:
         | 
| 96 | 
            +
                                          # skip answer that are not in the context.
         | 
| 97 | 
            +
                                          if offset[start_index] is None or offset[end_index] is None:
         | 
| 98 | 
            +
                                               continue
         | 
| 99 | 
            +
                                          # skip answer with length that is either < 0
         | 
| 100 | 
            +
                                          if end_index < start_index:
         | 
| 101 | 
            +
                                               continue
         | 
| 102 | 
            +
                                          flag = True
         | 
| 103 | 
            +
                                          answer = context[offset[start_index][0]: offset[end_index][1]]
         | 
| 104 | 
            +
                                          predicted_answer.append(answer)
         | 
| 105 | 
            +
                                          break
         | 
| 106 | 
            +
                                     if flag:
         | 
| 107 | 
            +
                                          break
         | 
| 108 | 
            +
                                if not flag:
         | 
| 109 | 
            +
                                     predicted_answer.append(answer)
         | 
| 110 | 
            +
                           return {"predicted_answer":predicted_answer}
         | 
| 111 | 
            +
                          
         | 
| 112 | 
            +
                      processed_raw_data.set_format("pandas")
         | 
| 113 | 
            +
                          
         | 
| 114 | 
            +
                      processed_raw_df =  processed_raw_data[:]
         | 
| 115 | 
            +
                      processed_raw_df["start_logits"] = start_logits.tolist()
         | 
| 116 | 
            +
                      processed_raw_df["end_logits"] = end_logits.tolist()
         | 
| 117 | 
            +
                      processed_raw_df["text"] = X["text"]
         | 
| 118 | 
            +
                          
         | 
| 119 | 
            +
                      final_data = Dataset.from_pandas(processed_raw_df)
         | 
| 120 | 
            +
                      final_data = final_data.map(predict_answers,batched=True)
         | 
| 121 | 
            +
                     
         | 
| 122 | 
            +
                   
         | 
| 123 | 
            +
                 
         | 
| 124 | 
            +
                 st.markdown("## " +final_data["predicted_answer"]  )
         |