Spaces:
Sleeping
Sleeping
File size: 5,961 Bytes
4d234fe addef69 4d234fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import requests
import pandas as pd
import gradio as gr
import datetime
import nltk
from datetime import datetime, timedelta
from nltk.sentiment.vader import SentimentIntensityAnalyzer
nltk.download('vader_lexicon')
from transformers import pipeline
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
from dotenv import load_dotenv
import os
load_dotenv()
api_key = os.getenv("API_KEY")
if not api_key:
raise ValueError("API_KEY not found. Make sure to set it in the .env file.")
SOURCE_BIAS_MAP = {
"fox news": "right",
"breitbart": "right",
"new york post": "right",
"the wall street journal": "center-right",
"reuters": "center",
"associated press": "center",
"bloomberg": "center",
"npr": "center-left",
"cnn": "left",
"msnbc": "left",
"the new york times": "left",
"the washington post": "left",
"the guardian": "left",
"bbc news": "center",
"sky news": "center-right",
"the telegraph": "right",
"the times": "center-right",
"daily mail": "right",
"the independent": "center-left",
"the sun": "right",
"financial times": "center",
}
BIAS_SCORE_MAP = {
"left": -1,
"center-left": -0.5,
"center": 0,
"center-right": 0.5,
"right": 1,
"unknown": 0
}
def query(query, sort_by="popularity", max_tokens=100):
if query == "":
print("Topic needs to be passed in")
return
today = datetime.today()
seven_days_ago = today - timedelta(days=7)
from_date = seven_days_ago.strftime('%Y-%m-%d')
to_date = today.strftime('%Y-%m-%d')
base_url = "https://newsapi.org/v2/everything"
url = f"{base_url}?q={query}&from={from_date}&to={to_date}&sortBy={sort_by}&apiKey={api_key}"
news = None
try:
news_response = requests.get(url, timeout=10)
if news_response.status_code == 200:
news = news_response.json()
else:
print("API error has occured", news_response.status_code)
except Exception:
print('An exception occurred')
article_arr = news["articles"]
extracted_data = []
for article in article_arr:
extracted_data.append({
"title": article.get("title", "N/A"),
"description": article.get("description", "N/A"),
"source_name": article.get("source", {}).get("name", "N/A"),
"url": article.get("url", "N/A"),
"publishedAt": article.get("publishedAt", "N/A")
})
df = pd.DataFrame(extracted_data)
return df
def process_data(df):
df_cleaned = df.dropna(subset=["title", "description"])
df_cleaned = df_cleaned[df_cleaned["title"].str.strip() != ""]
df_cleaned = df_cleaned[df_cleaned["description"].str.strip() != ""]
df_cleaned = df_cleaned.drop_duplicates(subset=["title", "url"])
df_cleaned["text"] = df_cleaned["title"] + df_cleaned["description"].str.lower()
return df_cleaned
def analyse_sentiment(df):
analyser = SentimentIntensityAnalyzer()
df['compound'] = [analyser.polarity_scores(x)['compound'] for x in df['text']]
df['neg'] = [analyser.polarity_scores(x)['neg'] for x in df['text']]
df['neu'] = [analyser.polarity_scores(x)['neu'] for x in df['text']]
df['pos'] = [analyser.polarity_scores(x)['pos'] for x in df['text']]
def label_sentiment(score):
if score >= 0.05:
return "positive"
elif score <= -0.05:
return "negative"
else:
return "neutral"
df['sentiment_label'] = df['compound'].apply(label_sentiment)
return df
def get_bias_label(source_name):
source = source_name.strip().lower()
return SOURCE_BIAS_MAP.get(source, "unknown")
def add_bias_annotation(df):
df['bias_label'] = df['source_name'].apply(get_bias_label)
return df
def set_article_extremity(df, top_n=5):
def get_bias_extremity(label):
return BIAS_SCORE_MAP.get(label, 0)
df['bias_score'] = df['bias_label'].apply(get_bias_extremity)
df['extremity_score'] = df['compound'].abs() + df['bias_score'].abs()
df['extremity_pct'] = (df['extremity_score'] / 2) * 100
df['extremity_pct'] = df['extremity_pct'].round(1)
df = df.sort_values(by='extremity_score', ascending=False)
df['extreme'] = False
df.loc[df.index[:top_n], 'extreme'] = True
return df
def summarise_text(row, max_tokens=512):
try:
text = row['text'] if 'text' in row and pd.notna(row['text']) else ''
source_name = row['source_name'] if 'source_name' in row and pd.notna(row['source_name']) else 'unknown'
input_length = len(text.split())
if input_length < 40:
max_length = max(10, int(input_length / 2))
else:
max_length = min(input_length - 10, max_tokens)
min_length = max(10, max_length - 10)
summary = summarizer(text, max_length=max_length, min_length=min_length, do_sample=False)
summary_text = summary[0]['summary_text']
bias_label = get_bias_label(source_name)
return pd.Series({
'summary': summary_text,
'bias_score': bias_label,
'source': source_name
})
except Exception as e:
print(f"Error summarising row: {e}")
return pd.Series({
'summary': 'Summary unavailable',
'bias_score': 'unknown',
'source': 'unknown'
})
def add_article_summaries(df, max_tokens=512):
summary_df = df.apply(summarise_text, axis=1, max_tokens=max_tokens)
df[['summary', 'bias_score', 'source']] = summary_df
return df
def main():
raw_df = query("Tesla")
processed_df = process_data(raw_df)
sentiment_df = analyse_sentiment(processed_df)
bias_df = add_bias_annotation(sentiment_df)
extremity_df = set_article_extremity(bias_df)
final_df = add_article_summaries(extremity_df)
if __name__ == "__main__":
main()
|