MjolnirThor's picture
Initial commit: Add FLAN-T5 custom handler
f38a916
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch
class EndpointHandler:
def __init__(self, path="google/flan-t5-large"):
self.tokenizer = AutoTokenizer.from_pretrained(path)
self.model = AutoModelForSeq2SeqLM.from_pretrained(path)
def __call__(self, data):
"""
Args:
data: (dict): A dictionary with a "inputs" key containing the text to process
"""
inputs = data.pop("inputs", data)
# Parameters for text generation
parameters = {
"max_length": 512,
"min_length": 32,
"temperature": 0.9,
"top_p": 0.95,
"top_k": 50,
"do_sample": True,
"num_return_sequences": 1
}
# Update parameters if provided in the request
parameters.update(data)
# Tokenize the input
input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids
# Generate the response
outputs = self.model.generate(input_ids, **parameters)
# Decode the response
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
return {"generated_text": generated_text}