Spaces:
Running
on
A10G
Running
on
A10G
File size: 1,492 Bytes
726ec90 6831f1f 726ec90 6831f1f 726ec90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import io
import threading
from multiprocessing import Queue
from queue import Empty
from faster_whisper import WhisperModel
class AudioTranscriber(threading.Thread):
def __init__(self, audio_queue: "Queue[io.BytesIO]", text_queue: "Queue[str]"):
super().__init__()
self.audio_queue = audio_queue
self.action_queue = text_queue
self.daemon = True # Thread will exit when main program exits
self.transcriber = WhisperModel(
"medium",
device="cuda",
compute_type="int8",
)
def run(self):
while True:
try:
# Wait for 1 second before timing out and checking again
audio_chunk = self.audio_queue.get(timeout=1)
# Process the audio chunk using the faster-whisper implementation
segments, info = self.transcriber.transcribe(audio_chunk, language="fr")
# Put the transcription results in the output queue
for segment in segments:
self.action_queue.put(segment.text)
# Still print for debugging
print(
f"[%.2fs -> %.2fs] %s"
% (segment.start, segment.end, segment.text)
)
except Empty:
continue # If queue is empty, continue waiting
except Exception as e:
print(f"Error processing audio chunk: {e}")
|