Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#https://huggingface.co/spaces/MisterAI/GenDoc_05
|
2 |
+
#app.py_146
|
3 |
+
#Separation Du Code
|
4 |
+
#Correction Sortie Logs
|
5 |
+
|
6 |
+
import os
|
7 |
+
import gradio as gr
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
+
import torch
|
10 |
+
import time
|
11 |
+
from llm.list_llm import TEXT_MODELS, IMAGE_MODELS
|
12 |
+
from llm.prompt_llm import PREPROMPT
|
13 |
+
from python_pptx.python_pptx import PresentationGenerator
|
14 |
+
|
15 |
+
# Configuration du modèle par défaut
|
16 |
+
DEFAULT_MODEL = "ibm-granite/granite-3.1-3b-a800m-Instruct"
|
17 |
+
|
18 |
+
class ExecutionTimer:
|
19 |
+
def __init__(self):
|
20 |
+
self.start_time = None
|
21 |
+
self.last_duration = None
|
22 |
+
|
23 |
+
def start(self):
|
24 |
+
self.start_time = time.time()
|
25 |
+
|
26 |
+
def get_elapsed(self):
|
27 |
+
if self.start_time is None:
|
28 |
+
return 0
|
29 |
+
return time.time() - self.start_time
|
30 |
+
|
31 |
+
def stop(self):
|
32 |
+
if self.start_time is not None:
|
33 |
+
self.last_duration = self.get_elapsed()
|
34 |
+
self.start_time = None
|
35 |
+
return self.last_duration
|
36 |
+
|
37 |
+
def get_status(self):
|
38 |
+
if self.start_time is not None:
|
39 |
+
current = self.get_elapsed()
|
40 |
+
last = f" (précédent: {self.last_duration:.2f}s)" if self.last_duration else ""
|
41 |
+
return f"En cours... {current:.2f}s{last}"
|
42 |
+
elif self.last_duration:
|
43 |
+
return f"Terminé en {self.last_duration:.2f}s"
|
44 |
+
return "En attente..."
|
45 |
+
|
46 |
+
def generate_text(model_path, prompt, temperature=0.7, max_tokens=2048):
|
47 |
+
try:
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
49 |
+
model = AutoModelForCausalLM.from_pretrained(
|
50 |
+
model_path,
|
51 |
+
torch_dtype=torch.float32,
|
52 |
+
device_map="auto"
|
53 |
+
)
|
54 |
+
model.eval()
|
55 |
+
|
56 |
+
chat = [{"role": "user", "content": prompt}]
|
57 |
+
formatted_prompt = tokenizer.apply_chat_template(
|
58 |
+
chat,
|
59 |
+
tokenize=False,
|
60 |
+
add_generation_prompt=True
|
61 |
+
)
|
62 |
+
|
63 |
+
inputs = tokenizer(
|
64 |
+
formatted_prompt,
|
65 |
+
return_tensors="pt",
|
66 |
+
truncation=True,
|
67 |
+
max_length=4096
|
68 |
+
).to(model.device)
|
69 |
+
|
70 |
+
with torch.no_grad():
|
71 |
+
outputs = model.generate(
|
72 |
+
**inputs,
|
73 |
+
max_new_tokens=max_tokens,
|
74 |
+
temperature=temperature,
|
75 |
+
do_sample=True,
|
76 |
+
pad_token_id=tokenizer.eos_token_id
|
77 |
+
)
|
78 |
+
|
79 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
80 |
+
|
81 |
+
except Exception as e:
|
82 |
+
print(f"Erreur lors de la génération: {str(e)}")
|
83 |
+
raise
|
84 |
+
|
85 |
+
def generate_skeleton(model_name, text, temperature, max_tokens):
|
86 |
+
"""Génère le squelette de la présentation"""
|
87 |
+
try:
|
88 |
+
timer.start()
|
89 |
+
|
90 |
+
model_path = TEXT_MODELS.get(model_name, DEFAULT_MODEL)
|
91 |
+
full_prompt = PREPROMPT + "\n\n" + text
|
92 |
+
generated_content = generate_text(model_path, full_prompt, temperature, max_tokens)
|
93 |
+
|
94 |
+
status = timer.get_status()
|
95 |
+
timer.stop()
|
96 |
+
|
97 |
+
return status, generated_content, gr.update(visible=True)
|
98 |
+
|
99 |
+
except Exception as e:
|
100 |
+
timer.stop()
|
101 |
+
error_msg = f"Erreur: {str(e)}"
|
102 |
+
print(error_msg)
|
103 |
+
return error_msg, None, gr.update(visible=False)
|
104 |
+
|
105 |
+
def create_presentation_file(generated_content):
|
106 |
+
"""Crée le fichier PowerPoint à partir du contenu généré"""
|
107 |
+
try:
|
108 |
+
timer.start()
|
109 |
+
generator = PresentationGenerator()
|
110 |
+
|
111 |
+
slides = generator.parse_presentation_content(generated_content)
|
112 |
+
prs = generator.create_presentation(slides)
|
113 |
+
|
114 |
+
output_path = os.path.join(os.getcwd(), "presentation.pptx")
|
115 |
+
prs.save(output_path)
|
116 |
+
|
117 |
+
timer.stop()
|
118 |
+
return output_path
|
119 |
+
|
120 |
+
except Exception as e:
|
121 |
+
timer.stop()
|
122 |
+
print(f"Erreur lors de la création du fichier: {str(e)}")
|
123 |
+
return None
|
124 |
+
|
125 |
+
# Timer global pour le suivi du temps
|
126 |
+
timer = ExecutionTimer()
|
127 |
+
|
128 |
+
# Interface Gradio
|
129 |
+
with gr.Blocks(theme=gr.themes.Glass()) as demo:
|
130 |
+
gr.Markdown(
|
131 |
+
"""
|
132 |
+
# Générateur de Présentations PowerPoint IA
|
133 |
+
|
134 |
+
Créez des présentations professionnelles automatiquement avec l'aide de l'IA.
|
135 |
+
"""
|
136 |
+
)
|
137 |
+
|
138 |
+
with gr.Row():
|
139 |
+
with gr.Column(scale=1):
|
140 |
+
model_selector = gr.Dropdown(
|
141 |
+
choices=list(TEXT_MODELS.keys()) if TEXT_MODELS else ["Granite"],
|
142 |
+
value="Granite" if not TEXT_MODELS else list(TEXT_MODELS.keys())[0],
|
143 |
+
label="Modèle de texte"
|
144 |
+
)
|
145 |
+
temperature = gr.Slider(
|
146 |
+
minimum=0.1,
|
147 |
+
maximum=1.0,
|
148 |
+
value=0.7,
|
149 |
+
step=0.1,
|
150 |
+
label="Température"
|
151 |
+
)
|
152 |
+
max_tokens = gr.Slider(
|
153 |
+
minimum=1000,
|
154 |
+
maximum=4096,
|
155 |
+
value=2048,
|
156 |
+
step=256,
|
157 |
+
label="Tokens maximum"
|
158 |
+
)
|
159 |
+
|
160 |
+
with gr.Row():
|
161 |
+
with gr.Column(scale=2):
|
162 |
+
input_text = gr.Textbox(
|
163 |
+
lines=10,
|
164 |
+
label="Votre texte",
|
165 |
+
placeholder="Décrivez le contenu que vous souhaitez pour votre présentation..."
|
166 |
+
)
|
167 |
+
|
168 |
+
with gr.Row():
|
169 |
+
generate_skeleton_btn = gr.Button("Générer le Squelette de la Présentation", variant="primary")
|
170 |
+
|
171 |
+
with gr.Row():
|
172 |
+
with gr.Column():
|
173 |
+
status_output = gr.Textbox(
|
174 |
+
label="Statut",
|
175 |
+
lines=2,
|
176 |
+
value=timer.get_status()
|
177 |
+
)
|
178 |
+
generated_content = gr.Textbox(
|
179 |
+
label="Contenu généré",
|
180 |
+
lines=10,
|
181 |
+
show_copy_button=True
|
182 |
+
)
|
183 |
+
create_presentation_btn = gr.Button("Créer Présentation", visible=True)
|
184 |
+
output_file = gr.File(
|
185 |
+
label="Présentation PowerPoint",
|
186 |
+
type="filepath"
|
187 |
+
)
|
188 |
+
|
189 |
+
def update_status():
|
190 |
+
"""Met à jour le statut avec le temps écoulé"""
|
191 |
+
return timer.get_status()
|
192 |
+
|
193 |
+
generate_skeleton_btn.click(
|
194 |
+
fn=generate_skeleton,
|
195 |
+
inputs=[
|
196 |
+
model_selector,
|
197 |
+
input_text,
|
198 |
+
temperature,
|
199 |
+
max_tokens
|
200 |
+
],
|
201 |
+
outputs=[
|
202 |
+
status_output,
|
203 |
+
generated_content,
|
204 |
+
create_presentation_btn
|
205 |
+
]
|
206 |
+
)
|
207 |
+
|
208 |
+
create_presentation_btn.click(
|
209 |
+
fn=create_presentation_file,
|
210 |
+
inputs=[generated_content],
|
211 |
+
outputs=[output_file]
|
212 |
+
)
|
213 |
+
|
214 |
+
# Met à jour le statut toutes les 5 secondes
|
215 |
+
gr.Interval(every=5, fn=update_status, outputs=status_output)
|
216 |
+
|
217 |
+
if __name__ == "__main__":
|
218 |
+
demo.launch()
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
+
|