|  |  | 
					
						
						|  |  | 
					
						
						|  | import os | 
					
						
						|  | import gradio as gr | 
					
						
						|  | from huggingface_hub import hf_hub_download, login | 
					
						
						|  | from transformers import AutoModelForCausalLM, AutoTokenizer | 
					
						
						|  | from pptx import Presentation | 
					
						
						|  | from pptx.util import Inches, Pt | 
					
						
						|  | from pptx.enum.text import PP_ALIGN | 
					
						
						|  | import torch | 
					
						
						|  | from llama_cpp import Llama | 
					
						
						|  | import time | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | TEXT_MODELS = { | 
					
						
						|  | "Mistral Nemo 2407 (GGUF)": "MisterAI/Bartowski_MistralAI_Mistral-Nemo-Instruct-2407-IQ4_XS.gguf", | 
					
						
						|  | "Mixtral 8x7B": "mistralai/Mixtral-8x7B-v0.1", | 
					
						
						|  | "Lucie 7B": "OpenLLM-France/Lucie-7B" | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | PREPROMPT = """Vous êtes un assistant IA expert en création de présentations PowerPoint professionnelles. | 
					
						
						|  | Générez une présentation structurée et détaillée en suivant ce format EXACT: | 
					
						
						|  |  | 
					
						
						|  | TITRE: [Titre principal de la présentation] | 
					
						
						|  |  | 
					
						
						|  | DIAPO 1: | 
					
						
						|  | Titre: [Titre de la diapo] | 
					
						
						|  | Points: | 
					
						
						|  | - Point 1 | 
					
						
						|  | - Point 2 | 
					
						
						|  | - Point 3 | 
					
						
						|  |  | 
					
						
						|  | DIAPO 2: | 
					
						
						|  | Titre: [Titre de la diapo] | 
					
						
						|  | Points: | 
					
						
						|  | - Point 1 | 
					
						
						|  | - Point 2 | 
					
						
						|  | - Point 3 | 
					
						
						|  |  | 
					
						
						|  | [Continuez avec ce format pour chaque diapositive] | 
					
						
						|  |  | 
					
						
						|  | Analysez le texte suivant et créez une présentation professionnelle :""" | 
					
						
						|  |  | 
					
						
						|  | class PresentationGenerator: | 
					
						
						|  | def __init__(self): | 
					
						
						|  | self.token = os.getenv('Authentification_HF') | 
					
						
						|  | if not self.token: | 
					
						
						|  | raise ValueError("Token d'authentification HuggingFace non trouvé") | 
					
						
						|  | login(self.token) | 
					
						
						|  | self.text_model = None | 
					
						
						|  | self.text_tokenizer = None | 
					
						
						|  |  | 
					
						
						|  | def load_text_model(self, model_name): | 
					
						
						|  | """Charge le modèle de génération de texte""" | 
					
						
						|  | model_id = TEXT_MODELS[model_name] | 
					
						
						|  | if model_id.endswith('.gguf'): | 
					
						
						|  | model_path = hf_hub_download( | 
					
						
						|  | repo_id=model_id.split('/')[0] + '/' + model_id.split('/')[1], | 
					
						
						|  | filename=model_id.split('/')[-1], | 
					
						
						|  | token=self.token | 
					
						
						|  | ) | 
					
						
						|  | self.text_model = Llama( | 
					
						
						|  | model_path=model_path, | 
					
						
						|  | n_ctx=4096, | 
					
						
						|  | n_batch=512, | 
					
						
						|  | verbose=False | 
					
						
						|  | ) | 
					
						
						|  | print(f"Modèle GGUF {model_id} chargé avec succès!") | 
					
						
						|  | else: | 
					
						
						|  | self.text_tokenizer = AutoTokenizer.from_pretrained(model_id, token=self.token) | 
					
						
						|  | self.text_model = AutoModelForCausalLM.from_pretrained( | 
					
						
						|  | model_id, | 
					
						
						|  | torch_dtype=torch.bfloat16, | 
					
						
						|  | device_map="auto", | 
					
						
						|  | token=self.token | 
					
						
						|  | ) | 
					
						
						|  | print(f"Modèle Transformers {model_id} chargé avec succès!") | 
					
						
						|  |  | 
					
						
						|  | def generate_text(self, prompt, temperature=0.7, max_tokens=4096): | 
					
						
						|  | """Génère le texte de la présentation""" | 
					
						
						|  | if isinstance(self.text_model, Llama): | 
					
						
						|  | response = self.text_model( | 
					
						
						|  | prompt, | 
					
						
						|  | max_tokens=max_tokens, | 
					
						
						|  | temperature=temperature, | 
					
						
						|  | echo=False | 
					
						
						|  | ) | 
					
						
						|  | print("Texte généré par Llama :", response['choices'][0]['text']) | 
					
						
						|  | return response['choices'][0]['text'] | 
					
						
						|  | else: | 
					
						
						|  | inputs = self.text_tokenizer.apply_chat_template( | 
					
						
						|  | [{"role": "user", "content": prompt}], | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | return_dict=True | 
					
						
						|  | ) | 
					
						
						|  | outputs = self.text_model.generate( | 
					
						
						|  | **inputs, | 
					
						
						|  | max_new_tokens=max_tokens, | 
					
						
						|  | temperature=temperature | 
					
						
						|  | ) | 
					
						
						|  | generated_text = self.text_tokenizer.decode(outputs[0], skip_special_tokens=True) | 
					
						
						|  | print("Texte généré par Transformers :", generated_text) | 
					
						
						|  | return generated_text | 
					
						
						|  |  | 
					
						
						|  | def parse_presentation_content(self, content): | 
					
						
						|  | """Parse le contenu généré en sections pour les diapositives""" | 
					
						
						|  | slides = [] | 
					
						
						|  | current_slide = None | 
					
						
						|  |  | 
					
						
						|  | for line in content.split('\n'): | 
					
						
						|  | line = line.strip() | 
					
						
						|  | if line.startswith('TITRE:'): | 
					
						
						|  | slides.append({'type': 'title', 'title': line[6:].strip()}) | 
					
						
						|  | elif line.startswith('DIAPO'): | 
					
						
						|  | if current_slide: | 
					
						
						|  | slides.append(current_slide) | 
					
						
						|  | current_slide = {'type': 'content', 'title': '', 'points': []} | 
					
						
						|  | elif line.startswith('Titre:') and current_slide: | 
					
						
						|  | current_slide['title'] = line[6:].strip() | 
					
						
						|  | elif line.startswith('- ') and current_slide: | 
					
						
						|  | current_slide['points'].append(line[2:].strip()) | 
					
						
						|  |  | 
					
						
						|  | if current_slide: | 
					
						
						|  | slides.append(current_slide) | 
					
						
						|  |  | 
					
						
						|  | return slides | 
					
						
						|  |  | 
					
						
						|  | def create_presentation(self, slides): | 
					
						
						|  | """Crée la présentation PowerPoint avec texte uniquement""" | 
					
						
						|  | prs = Presentation() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | title_slide = prs.slides.add_slide(prs.slide_layouts[0]) | 
					
						
						|  | title_slide.shapes.title.text = slides[0]['title'] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for slide in slides[1:]: | 
					
						
						|  | content_slide = prs.slides.add_slide(prs.slide_layouts[1]) | 
					
						
						|  | content_slide.shapes.title.text = slide['title'] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if slide['points']: | 
					
						
						|  | body = content_slide.shapes.placeholders[1].text_frame | 
					
						
						|  | body.clear() | 
					
						
						|  | for point in slide['points']: | 
					
						
						|  | p = body.add_paragraph() | 
					
						
						|  | p.text = point | 
					
						
						|  | p.level = 0 | 
					
						
						|  |  | 
					
						
						|  | return prs | 
					
						
						|  |  | 
					
						
						|  | def generate_presentation_with_progress(text, text_model_name, temperature, max_tokens): | 
					
						
						|  | """Fonction principale de génération avec suivi de progression""" | 
					
						
						|  | try: | 
					
						
						|  | start_time = time.time() | 
					
						
						|  | generator = PresentationGenerator() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | yield "Chargement du modèle...", None, None | 
					
						
						|  | generator.load_text_model(text_model_name) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | yield "Génération du contenu de la présentation...", None, None | 
					
						
						|  | full_prompt = PREPROMPT + "\n\n" + text | 
					
						
						|  | generated_content = generator.generate_text(full_prompt, temperature, max_tokens) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | yield "Création de la présentation PowerPoint...", generated_content, None | 
					
						
						|  | slides = generator.parse_presentation_content(generated_content) | 
					
						
						|  | prs = generator.create_presentation(slides) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | output_path = os.path.abspath("presentation.pptx") | 
					
						
						|  | prs.save(output_path) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not os.path.exists(output_path): | 
					
						
						|  | raise FileNotFoundError(f"Le fichier {output_path} n'a pas été créé correctement") | 
					
						
						|  |  | 
					
						
						|  | execution_time = time.time() - start_time | 
					
						
						|  | status = f"Présentation générée avec succès en {execution_time:.2f} secondes!" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return status, generated_content, (output_path, "presentation.pptx") | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | print(f"Erreur lors de la génération: {str(e)}") | 
					
						
						|  | return f"Erreur: {str(e)}", None, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | css = """ | 
					
						
						|  | /* Thème sombre personnalisé */ | 
					
						
						|  | .gradio-container { | 
					
						
						|  | background-color: #000000 !important; | 
					
						
						|  | color: #ffffff !important; | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | .gr-form, .gr-box, .gr-panel { | 
					
						
						|  | border-radius: 8px !important; | 
					
						
						|  | background-color: #1a1a1a !important; | 
					
						
						|  | border: 1px solid #333333 !important; | 
					
						
						|  | color: #ffffff !important; | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | .gr-input, .gr-textarea, .gr-dropdown { | 
					
						
						|  | background-color: #2d2d2d !important; | 
					
						
						|  | color: #ffffff !important; | 
					
						
						|  | border: 1px solid #404040 !important; | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | .gr-button { | 
					
						
						|  | background-color: #2d2d2d !important; | 
					
						
						|  | color: #ffffff !important; | 
					
						
						|  | border: 1px solid #404040 !important; | 
					
						
						|  | transition: all 0.3s ease !important; | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | .gr-button:hover { | 
					
						
						|  | background-color: #404040 !important; | 
					
						
						|  | transform: translateY(-2px) !important; | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | /* Textes et labels */ | 
					
						
						|  | h1, h2, h3, p, label, .gr-text { | 
					
						
						|  | color: #ffffff !important; | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | /* Scrollbar */ | 
					
						
						|  | ::-webkit-scrollbar { | 
					
						
						|  | width: 8px; | 
					
						
						|  | height: 8px; | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | ::-webkit-scrollbar-track { | 
					
						
						|  | background: #1a1a1a; | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | ::-webkit-scrollbar-thumb { | 
					
						
						|  | background: #404040; | 
					
						
						|  | border-radius: 4px; | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | ::-webkit-scrollbar-thumb:hover { | 
					
						
						|  | background: #4a4a4a; | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | with gr.Blocks(theme=gr.themes.Default(), css=css) as demo: | 
					
						
						|  | gr.Markdown( | 
					
						
						|  | """ | 
					
						
						|  | # 🎯 Générateur de Présentations PowerPoint IA | 
					
						
						|  |  | 
					
						
						|  | Créez des présentations professionnelles automatiquement avec l'aide de l'IA. | 
					
						
						|  | """ | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(scale=1): | 
					
						
						|  | text_model_choice = gr.Dropdown( | 
					
						
						|  | choices=list(TEXT_MODELS.keys()), | 
					
						
						|  | value=list(TEXT_MODELS.keys())[0], | 
					
						
						|  | label="Modèle de génération de texte" | 
					
						
						|  | ) | 
					
						
						|  | temperature = gr.Slider( | 
					
						
						|  | minimum=0.1, | 
					
						
						|  | maximum=1.0, | 
					
						
						|  | value=0.7, | 
					
						
						|  | step=0.1, | 
					
						
						|  | label="Température" | 
					
						
						|  | ) | 
					
						
						|  | max_tokens = gr.Slider( | 
					
						
						|  | minimum=1000, | 
					
						
						|  | maximum=4096, | 
					
						
						|  | value=2048, | 
					
						
						|  | step=256, | 
					
						
						|  | label="Tokens maximum" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(scale=2): | 
					
						
						|  | input_text = gr.Textbox( | 
					
						
						|  | lines=10, | 
					
						
						|  | label="Votre texte", | 
					
						
						|  | placeholder="Décrivez le contenu que vous souhaitez pour votre présentation..." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | generate_btn = gr.Button("🚀 Générer la présentation", variant="primary") | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | status_output = gr.Textbox( | 
					
						
						|  | label="Statut", | 
					
						
						|  | lines=2 | 
					
						
						|  | ) | 
					
						
						|  | generated_content = gr.Textbox( | 
					
						
						|  | label="Contenu généré", | 
					
						
						|  | lines=10, | 
					
						
						|  | show_copy_button=True | 
					
						
						|  | ) | 
					
						
						|  | output_file = gr.File( | 
					
						
						|  | label="Présentation PowerPoint" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | generate_btn.click( | 
					
						
						|  | fn=generate_presentation_with_progress, | 
					
						
						|  | inputs=[ | 
					
						
						|  | input_text, | 
					
						
						|  | text_model_choice, | 
					
						
						|  | temperature, | 
					
						
						|  | max_tokens | 
					
						
						|  | ], | 
					
						
						|  | outputs=[ | 
					
						
						|  | status_output, | 
					
						
						|  | generated_content, | 
					
						
						|  | output_file | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | demo.launch() |