Spaces:
Running
Running
| #MisterAI/Docker_Ollama | |
| #app.py_03 | |
| #https://huggingface.co/spaces/MisterAI/Docker_Ollama/ | |
| #Ajouter Historique | |
| import logging | |
| import requests | |
| from pydantic import BaseModel | |
| from langchain_community.llms import Ollama | |
| from langchain.callbacks.manager import CallbackManager | |
| from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
| import gradio as gr | |
| import threading | |
| import subprocess | |
| from bs4 import BeautifulSoup | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| # Cache pour stocker les modèles déjà chargés | |
| loaded_models = {} | |
| # Variable pour suivre l'état du bouton "Stop" | |
| stop_flag = False | |
| def get_model_list(): | |
| url = "https://ollama.com/search" | |
| response = requests.get(url) | |
| # Vérifier si la requête a réussi | |
| if response.status_code == 200: | |
| # Utiliser BeautifulSoup pour analyser le HTML | |
| soup = BeautifulSoup(response.text, 'html.parser') | |
| model_list = [] | |
| # Trouver tous les éléments de modèle | |
| model_elements = soup.find_all('li', {'x-test-model': True}) | |
| for model_element in model_elements: | |
| model_name = model_element.find('span', {'x-test-search-response-title': True}).text.strip() | |
| size_elements = model_element.find_all('span', {'x-test-size': True}) | |
| # Filtrer les modèles par taille | |
| for size_element in size_elements: | |
| size = size_element.text.strip().lower() # Convertir en minuscules | |
| if 'x' in size: | |
| # Exclure les modèles avec des tailles de type nXm ou nXb | |
| continue | |
| elif size.endswith('m'): | |
| # Tous les modèles en millions sont acceptés | |
| model_list.append(f"{model_name}:{size}") | |
| elif size.endswith('b'): | |
| # Convertir les modèles en milliards en milliards | |
| size_value = float(size[:-1]) | |
| if size_value <= 10: # Filtrer les modèles <= 10 milliards de paramètres | |
| model_list.append(f"{model_name}:{size}") | |
| return model_list | |
| else: | |
| logger.error(f"Erreur lors de la récupération de la liste des modèles : {response.status_code} - {response.text}") | |
| return [] | |
| def get_llm(model_name): | |
| callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) | |
| return Ollama(model=model_name, callback_manager=callback_manager) | |
| class InputData(BaseModel): | |
| model_name: str | |
| input: str | |
| max_tokens: int = 256 | |
| temperature: float = 0.7 | |
| def pull_model(model_name): | |
| try: | |
| # Exécuter la commande pour tirer le modèle | |
| subprocess.run(["ollama", "pull", model_name], check=True) | |
| logger.info(f"Model {model_name} pulled successfully.") | |
| except subprocess.CalledProcessError as e: | |
| logger.error(f"Failed to pull model {model_name}: {e}") | |
| raise | |
| def check_and_load_model(model_name): | |
| # Vérifier si le modèle est déjà chargé | |
| if model_name in loaded_models: | |
| logger.info(f"Model {model_name} is already loaded.") | |
| return loaded_models[model_name] | |
| else: | |
| logger.info(f"Loading model {model_name}...") | |
| # Tirer le modèle si nécessaire | |
| pull_model(model_name) | |
| llm = get_llm(model_name) | |
| loaded_models[model_name] = llm | |
| return llm | |
| # Interface Gradio | |
| def gradio_interface(model_name, input, max_tokens, temperature, history): | |
| global stop_flag | |
| stop_flag = False | |
| # Ajouter la requête de l'utilisateur à l'historique une seule fois | |
| history.append((input, "")) | |
| yield history, history | |
| def worker(): | |
| llm = check_and_load_model(model_name) | |
| response = "" | |
| for token in llm.stream(input, max_tokens=max_tokens, temperature=temperature): | |
| if stop_flag: | |
| break | |
| response += token | |
| history[-1] = (input, response) | |
| yield history, history | |
| # Utiliser un thread pour gérer le streaming | |
| for result in worker(): | |
| if stop_flag: | |
| break | |
| yield result | |
| model_list = get_model_list() | |
| demo = gr.Interface( | |
| fn=gradio_interface, | |
| inputs=[ | |
| gr.Dropdown(model_list, label="Select Model", value="mistral:7b"), | |
| gr.Textbox(label="Input"), | |
| gr.Slider(minimum=1, maximum=2048, step=1, label="Max Tokens", value=256), | |
| gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label="Temperature", value=0.7), | |
| gr.State(value=[]) # Ajout de l'historique | |
| ], | |
| outputs=[ | |
| gr.Chatbot(label="History"), # Utilisation de Chatbot pour l'historique | |
| gr.State() # Ajout de l'historique | |
| ], | |
| title="Ollama Demo 🐳 🦙 🤗", | |
| description=""" | |
| Bienvenue sur Docker_Ollama, un espace dédié à l'exploration et au test des modèles Ollama. | |
| Cette Démo permet aux utilisateurs de tester tous les modèles Ollama dont la taille est inférieure à 10 milliards de paramètres directement depuis cette interface. | |
| L'Application tourne sur une machine Hugging Face Free Space : 2 CPU - 16Gb RAM | |
| Soyez patient. Chaque Nouveau Modèle Selectionner Devra Etre Télécharger Avant de Répondre. | |
| Il faut compter 2 a 3 minutes pour la réponse d'un modèle 7b alors que quelques dizaines de secondes suffisent pour un modèle 1b. | |
| """ | |
| ) | |
| def stop_processing(): | |
| global stop_flag | |
| stop_flag = True | |
| if __name__ == "__main__": | |
| demo.launch(server_name="0.0.0.0", server_port=7860, pwa=True) | |