Mister56 commited on
Commit
775f038
·
verified ·
1 Parent(s): 53f34c7

Second commit

Browse files
Files changed (1) hide show
  1. web_demo_2.5.py +256 -0
web_demo_2.5.py ADDED
@@ -0,0 +1,256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # encoding: utf-8
3
+ import gradio as gr
4
+ from PIL import Image
5
+ import traceback
6
+ import re
7
+ import torch
8
+ import argparse
9
+ from transformers import AutoModel, AutoTokenizer
10
+
11
+ # README, How to run demo on different devices
12
+
13
+ # For Nvidia GPUs.
14
+ # python web_demo_2.5.py --device cuda
15
+
16
+ # For Mac with MPS (Apple silicon or AMD GPUs).
17
+ # PYTORCH_ENABLE_MPS_FALLBACK=1 python web_demo_2.5.py --device mps
18
+
19
+ # Argparser
20
+ parser = argparse.ArgumentParser(description='demo')
21
+ parser.add_argument('--device', type=str, default='cuda', help='cuda or mps')
22
+ args = parser.parse_args()
23
+ device = args.device
24
+ assert device in ['cuda', 'mps']
25
+
26
+ # Load model
27
+ model_path = 'openbmb/MiniCPM-Llama3-V-2_5'
28
+ if 'int4' in model_path:
29
+ if device == 'mps':
30
+ print('Error: running int4 model with bitsandbytes on Mac is not supported right now.')
31
+ exit()
32
+ model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
33
+ else:
34
+ model = AutoModel.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.float16, device_map=device)
35
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
36
+ model.eval()
37
+
38
+
39
+
40
+ ERROR_MSG = "Error, please retry"
41
+ model_name = 'MiniCPM-V 2.5'
42
+
43
+ form_radio = {
44
+ 'choices': ['Beam Search', 'Sampling'],
45
+ #'value': 'Beam Search',
46
+ 'value': 'Sampling',
47
+ 'interactive': True,
48
+ 'label': 'Decode Type'
49
+ }
50
+ # Beam Form
51
+ num_beams_slider = {
52
+ 'minimum': 0,
53
+ 'maximum': 5,
54
+ 'value': 3,
55
+ 'step': 1,
56
+ 'interactive': True,
57
+ 'label': 'Num Beams'
58
+ }
59
+ repetition_penalty_slider = {
60
+ 'minimum': 0,
61
+ 'maximum': 3,
62
+ 'value': 1.2,
63
+ 'step': 0.01,
64
+ 'interactive': True,
65
+ 'label': 'Repetition Penalty'
66
+ }
67
+ repetition_penalty_slider2 = {
68
+ 'minimum': 0,
69
+ 'maximum': 3,
70
+ 'value': 1.05,
71
+ 'step': 0.01,
72
+ 'interactive': True,
73
+ 'label': 'Repetition Penalty'
74
+ }
75
+ max_new_tokens_slider = {
76
+ 'minimum': 1,
77
+ 'maximum': 4096,
78
+ 'value': 1024,
79
+ 'step': 1,
80
+ 'interactive': True,
81
+ 'label': 'Max New Tokens'
82
+ }
83
+
84
+ top_p_slider = {
85
+ 'minimum': 0,
86
+ 'maximum': 1,
87
+ 'value': 0.8,
88
+ 'step': 0.05,
89
+ 'interactive': True,
90
+ 'label': 'Top P'
91
+ }
92
+ top_k_slider = {
93
+ 'minimum': 0,
94
+ 'maximum': 200,
95
+ 'value': 100,
96
+ 'step': 1,
97
+ 'interactive': True,
98
+ 'label': 'Top K'
99
+ }
100
+ temperature_slider = {
101
+ 'minimum': 0,
102
+ 'maximum': 2,
103
+ 'value': 0.7,
104
+ 'step': 0.05,
105
+ 'interactive': True,
106
+ 'label': 'Temperature'
107
+ }
108
+
109
+
110
+ def create_component(params, comp='Slider'):
111
+ if comp == 'Slider':
112
+ return gr.Slider(
113
+ minimum=params['minimum'],
114
+ maximum=params['maximum'],
115
+ value=params['value'],
116
+ step=params['step'],
117
+ interactive=params['interactive'],
118
+ label=params['label']
119
+ )
120
+ elif comp == 'Radio':
121
+ return gr.Radio(
122
+ choices=params['choices'],
123
+ value=params['value'],
124
+ interactive=params['interactive'],
125
+ label=params['label']
126
+ )
127
+ elif comp == 'Button':
128
+ return gr.Button(
129
+ value=params['value'],
130
+ interactive=True
131
+ )
132
+
133
+
134
+ def chat(img, msgs, ctx, params=None, vision_hidden_states=None):
135
+ default_params = {"num_beams":3, "repetition_penalty": 1.2, "max_new_tokens": 1024}
136
+ if params is None:
137
+ params = default_params
138
+ if img is None:
139
+ return -1, "Error, invalid image, please upload a new image", None, None
140
+ try:
141
+ image = img.convert('RGB')
142
+ answer = model.chat(
143
+ image=image,
144
+ msgs=msgs,
145
+ tokenizer=tokenizer,
146
+ **params
147
+ )
148
+ res = re.sub(r'(<box>.*</box>)', '', answer)
149
+ res = res.replace('<ref>', '')
150
+ res = res.replace('</ref>', '')
151
+ res = res.replace('<box>', '')
152
+ answer = res.replace('</box>', '')
153
+ return 0, answer, None, None
154
+ except Exception as err:
155
+ print(err)
156
+ traceback.print_exc()
157
+ return -1, ERROR_MSG, None, None
158
+
159
+
160
+ def upload_img(image, _chatbot, _app_session):
161
+ image = Image.fromarray(image)
162
+
163
+ _app_session['sts']=None
164
+ _app_session['ctx']=[]
165
+ _app_session['img']=image
166
+ _chatbot.append(('', 'Image uploaded successfully, you can talk to me now'))
167
+ return _chatbot, _app_session
168
+
169
+
170
+ def respond(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature):
171
+ if _app_cfg.get('ctx', None) is None:
172
+ _chat_bot.append((_question, 'Please upload an image to start'))
173
+ return '', _chat_bot, _app_cfg
174
+
175
+ _context = _app_cfg['ctx'].copy()
176
+ if _context:
177
+ _context.append({"role": "user", "content": _question})
178
+ else:
179
+ _context = [{"role": "user", "content": _question}]
180
+ print('<User>:', _question)
181
+
182
+ if params_form == 'Beam Search':
183
+ params = {
184
+ 'sampling': False,
185
+ 'num_beams': num_beams,
186
+ 'repetition_penalty': repetition_penalty,
187
+ "max_new_tokens": 896
188
+ }
189
+ else:
190
+ params = {
191
+ 'sampling': True,
192
+ 'top_p': top_p,
193
+ 'top_k': top_k,
194
+ 'temperature': temperature,
195
+ 'repetition_penalty': repetition_penalty_2,
196
+ "max_new_tokens": 896
197
+ }
198
+ code, _answer, _, sts = chat(_app_cfg['img'], _context, None, params)
199
+ print('<Assistant>:', _answer)
200
+
201
+ _context.append({"role": "assistant", "content": _answer})
202
+ _chat_bot.append((_question, _answer))
203
+ if code == 0:
204
+ _app_cfg['ctx']=_context
205
+ _app_cfg['sts']=sts
206
+ return '', _chat_bot, _app_cfg
207
+
208
+
209
+ def regenerate_button_clicked(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature):
210
+ if len(_chat_bot) <= 1:
211
+ _chat_bot.append(('Regenerate', 'No question for regeneration.'))
212
+ return '', _chat_bot, _app_cfg
213
+ elif _chat_bot[-1][0] == 'Regenerate':
214
+ return '', _chat_bot, _app_cfg
215
+ else:
216
+ _question = _chat_bot[-1][0]
217
+ _chat_bot = _chat_bot[:-1]
218
+ _app_cfg['ctx'] = _app_cfg['ctx'][:-2]
219
+ return respond(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature)
220
+
221
+
222
+
223
+ with gr.Blocks() as demo:
224
+ with gr.Row():
225
+ with gr.Column(scale=1, min_width=300):
226
+ params_form = create_component(form_radio, comp='Radio')
227
+ with gr.Accordion("Beam Search") as beams_according:
228
+ num_beams = create_component(num_beams_slider)
229
+ repetition_penalty = create_component(repetition_penalty_slider)
230
+ with gr.Accordion("Sampling") as sampling_according:
231
+ top_p = create_component(top_p_slider)
232
+ top_k = create_component(top_k_slider)
233
+ temperature = create_component(temperature_slider)
234
+ repetition_penalty_2 = create_component(repetition_penalty_slider2)
235
+ regenerate = create_component({'value': 'Regenerate'}, comp='Button')
236
+ with gr.Column(scale=3, min_width=500):
237
+ app_session = gr.State({'sts':None,'ctx':None,'img':None})
238
+ bt_pic = gr.Image(label="Upload an image to start")
239
+ chat_bot = gr.Chatbot(label=f"Chat with {model_name}")
240
+ txt_message = gr.Textbox(label="Input text")
241
+
242
+ regenerate.click(
243
+ regenerate_button_clicked,
244
+ [txt_message, chat_bot, app_session, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature],
245
+ [txt_message, chat_bot, app_session]
246
+ )
247
+ txt_message.submit(
248
+ respond,
249
+ [txt_message, chat_bot, app_session, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature],
250
+ [txt_message, chat_bot, app_session]
251
+ )
252
+ bt_pic.upload(lambda: None, None, chat_bot, queue=False).then(upload_img, inputs=[bt_pic,chat_bot,app_session], outputs=[chat_bot,app_session])
253
+
254
+ # launch
255
+ demo.launch(share=False, debug=True, show_api=False, server_port=8080, server_name="0.0.0.0")
256
+