Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,4 @@
|
|
1 |
-
# app.py
|
2 |
-
|
3 |
import pandas as pd
|
4 |
-
from fastapi import FastAPI
|
5 |
-
from pydantic import BaseModel
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
import faiss
|
8 |
from datasets import load_dataset
|
@@ -37,55 +33,17 @@ embeddings = model.encode(questions, convert_to_tensor=True)
|
|
37 |
index = faiss.IndexFlatL2(embeddings.shape[1])
|
38 |
index.add(embeddings.cpu().numpy())
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
class Query(BaseModel):
|
44 |
-
question: str
|
45 |
-
|
46 |
-
@app.post("/ask")
|
47 |
-
def ask_bot(query: Query):
|
48 |
-
question_embedding = model.encode([query.question], convert_to_tensor=True)
|
49 |
question_embedding_np = question_embedding.cpu().numpy()
|
50 |
_, closest_index = index.search(question_embedding_np, k=1)
|
51 |
best_match_idx = closest_index[0][0]
|
52 |
answer = combined_data.iloc[best_match_idx]['Answer']
|
53 |
-
return
|
54 |
-
|
55 |
-
# Gradio Interface
|
56 |
-
|
57 |
-
import gradio as gr
|
58 |
-
import requests
|
59 |
-
|
60 |
-
# Define the URL of your FastAPI endpoint
|
61 |
-
API_URL = "http://localhost:8000/ask" # Update to your deployed FastAPI URL if needed
|
62 |
-
|
63 |
-
def respond(message, history: list[tuple[str, str]]):
|
64 |
-
payload = {"question": message}
|
65 |
-
|
66 |
-
try:
|
67 |
-
response = requests.post(API_URL, json=payload)
|
68 |
-
response.raise_for_status()
|
69 |
-
response_data = response.json()
|
70 |
-
answer = response_data.get("answer", "Sorry, I didn't get that.")
|
71 |
-
except requests.exceptions.RequestException as e:
|
72 |
-
answer = f"Request Error: {str(e)}"
|
73 |
-
|
74 |
-
# Update history
|
75 |
-
history.append((message, answer))
|
76 |
-
return answer, history
|
77 |
-
|
78 |
-
# Gradio Chat Interface
|
79 |
-
demo = gr.ChatInterface(
|
80 |
-
respond,
|
81 |
-
)
|
82 |
|
|
|
83 |
if __name__ == "__main__":
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
threading.Thread(target=uvicorn.run, args=(app,), kwargs={"host": "0.0.0.0", "port": 8000}).start()
|
89 |
-
|
90 |
-
# Launch Gradio interface
|
91 |
-
demo.launch()
|
|
|
|
|
|
|
1 |
import pandas as pd
|
|
|
|
|
2 |
from sentence_transformers import SentenceTransformer
|
3 |
import faiss
|
4 |
from datasets import load_dataset
|
|
|
33 |
index = faiss.IndexFlatL2(embeddings.shape[1])
|
34 |
index.add(embeddings.cpu().numpy())
|
35 |
|
36 |
+
def get_answer(question):
|
37 |
+
question_embedding = model.encode([question], convert_to_tensor=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
question_embedding_np = question_embedding.cpu().numpy()
|
39 |
_, closest_index = index.search(question_embedding_np, k=1)
|
40 |
best_match_idx = closest_index[0][0]
|
41 |
answer = combined_data.iloc[best_match_idx]['Answer']
|
42 |
+
return answer if answer else "Answer not found."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# Example usage
|
45 |
if __name__ == "__main__":
|
46 |
+
# Replace this with any input method you want, like a chatbot interface
|
47 |
+
user_question = input("Ask your question: ")
|
48 |
+
response = get_answer(user_question)
|
49 |
+
print("Response:", response)
|
|
|
|
|
|
|
|